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A MONTE CARLO STUDY OF NEW TIME-SERIES STATISTICAL TESTS 

AND THEIR APPLICATION TO THE MODELING OF 

PRICE DYNAMICS IN FUTURES MARKETS

BY 

HONG GAO

ABSTRACT

Modeling price dynamics in financial markets has become an important research 

area in financial economics. In the past empirical studies of financial price movements 

were based on methods that were incapable of detecting or modeling nonlinear serial 

dependence that characterizes financial market data. Recently, advances in the study of 

nonlinear dynamics in the physical sciences have motivated researchers to apply 

nonlinear time-series models to the study of financial and economic data. This 

dissertation investigates three statistical tests which can detect nonlinear serial 

dependence, and applies these tests and two nonlinear time-series models to futures 

markets.
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In this dissertation, the finite sample properties of the BDS, TAR-F, and Q2 test 

are evaluated using Monte Carlo experiments. Monte Carlo findings show that the finite 

sample distribution of the tests under the data generating processes (DGPs) of the null 

hypothesis approximates their asymptotic counterpart quite closely. The power of the 

tests on DGPs of alternative hypotheses reaches unity at sample size of 1000 when the 

DGPs are not too close to the DGP of the null hypothesis.

Base on findings of Monte Carlo investigation, the three tests and two nonlinear 

time-series models are applied to the study of price dynamics in futures markets. The 

futures studied are the S&P 500, Crude Oil, Japanese Yen, Deutsche Mark, and 

Eurodollar futures. The results show that the price changes of all five futures have 

nonlinear serial dependence, and that they can be modeled by nonlinear time-series 

models, either GARCH, or TAR, or combined TAR-GARCH model.

The main conclusions to emerge from the findings of this dissertation are as 

follows. The three tests are reliable for detecting serial dependence, including nonlinear 

serial dependence. The tests work well when sample size equals 1000 or larger and the 

sample’s departure from the null hypothesis is not too small. When analyzing futures 

prices, we have to account for nonlinear serial dependence, use nonlinear models with 

conditional heteroskedasticity and conditional mean change.

iii
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CHAPTER 1 

INTRODUCTION

1.1 Background

Financial economics has become a major field of economic analysis and much 

recent empirical work has focused on econometric modeling of price dynamics in 

financial markets.1 The study of price dynamics in financial markets may seem little 

more than of academic interest, but price changes in financial markets directly affect 

economic behavior. Price changes in financial markets, for example, affect consumers’ 

consumption and savings behavior. As another example, producers’ production planning 

and investment decisions regarding equipment, structures, and growth, and financial 

traders’ strategies all depend fundamentally on price dynamics. Finally, price changes 

in financial markets also affect government economic policy. Clearly, this dissertation’s 

study of price dynamics in financial markets is central to understanding economic 

behavior in financial economics.

1 See Eatwell, Milgate, and Newman (1989), Ross (1989). While some such as 
Taylor (1986) use the term "financial market" for the market of stock, commodities, and 
currencies, others may include the bond and T-note. In this dissertation I use the 
financial market to refer to markets of stock, bond, T-note, futures (commodities, stock 
index, currencies, T-bond and T-note futures), options, and currencies.

1
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Futures markets are good examples of financial markets and they have drawn 

much interest by researchers. Futures market participants are economic agents who seek 

information on future commodity prices, economic agents who want to avoid unwanted 

risk, and economic agents who want to make speculative profits. By providing people 

with information on future commodity prices, futures markets assist economic agents in 

making optimal consumption, investment and production decisions. By bridging unwanted 

risk from producers (ledgers) to speculators, futures markets also help improve 

efficiency in conducting economic activities. Futures markets also provide liquidity to the 

hedgers by the speculators.

Price dynamics in financial markets are believed to be governed by the efficient 

market hypothesis (EMH). It states that market price captures all available information. 

One version of the EMH is the weak-form efficient market hypothesis. If the market is 

weak-form efficient, then current asset prices reflect all information contained in 

historical prices. In this case a trader could not, on average, make economic profit in the 

market based on price information. The general testing method of the efficient market 

hypothesis is based on price forecast errors. Unfortunately, this is a joint test of the 

underlying forecast model and of the market efficiency hypothesis2. The standard testing 

techniques for market efficiency involve autocorrelations and autocovarainces3. These 

techniques have been shown to be incapable of detecting some nonlinear processes

2 See Fama (1976), Copeland and Weston (1988), and Heimstra (1990).

3 See Fama (1975, 1976), Miskin (1978), Hoffman et. al. (1984), and Summers 
(1986).
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(Barnett and Chen, 1989). Thus, if price dynamics in financial markets are inherently 

nonlinear, then standard tests may yield misleading and perhaps incorrect results 

regarding the efficient market hypothesis.

Perhaps the earliest model of price dynamics in financial markets was the random 

walk model proposed by Bachelier (1900). Extension of the random model lead to 

development of the martingale model and the mean-reverting model. All these models 

are consistent with the weak-form EMH. The random walk model assumes that the time 

series of asset price changes are independently and identically distributed (HD) Gaussian. 

Other types of random walk models, in the form of log-price changes and non-Gaussian 

distributions, have also been developed by other researchers4. Some recent empirical 

works have questioned the validity of the random walk model. Lo and Mackinlay (1988), 

for instance, applied a variance-ratio test to stock returns and rejected the random walk 

hypothesis.

The martingale model was formulated by Samuelson (1965) for study of price 

dynamics in financial markets. It requires the expected value of price changes to be zero. 

But unlike the random walk model, Samuelson’s martingale model does not require the 

time series of price changes to be independent nor does it require that price changes to 

be identically distributed. In general, the test of the martingale model, like the test of 

efficient market hypothesis, also depends on econometric model used to predict prices. 

Obviously, before we can formulate any predicative model and test the validity of the

4 Samuelson (1955), Osbome(1959), and Alexander(1961) suggested log price 
changes; Mandelbrot (1963), Fama (1969), and So (1987) suggested Stable Paretian 
distribution; Clark (1973) suggested sub Gaussian distribution.
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martingale model, we have to identify in a statistical sense whether prices follow a linear 

or nonlinear process. This presents the financial market analysis with an econometric 

model specification problem.

The model of mean-reverting processes suggests that price dynamics in financial 

markets are the sum of random walks and a stationary mean-reverting process.3 

According to this model, if market prices deviate from their mean (perhaps the 

fundamental value) beyond some range, prices revert to the mean, and prices will be 

negatively correlated with past prices. Fama and French (1988) found the negative 

autocorrelation in stock prices over long horizons which supports the mean-reverting 

process. But some recent studies reexamined the mean-reverting process and pointed out, 

however, that when stock returns from certain periods are excluded, the evidence of 

mean-reverting disappeared. Lo and Mackinlay’s (1988) study, based on variance-ratio 

statistic, rejects the mean-reverting process model as well as the random w^lk model.

Our review of the literature has shown that some empirical studies have rejected 

financial price models, the use of the random walk, the martingale, and the mean- 

reverting as models of financial price movements. Since there appears to be a model 

specification problem with the popular models, die test statistics associated with these 

models, and the testing method for efficient market hypothesis in financial markets (such 

as autocorrelation function and variance ratio test), may fail to detect serial dependence 

in financial prices. More fundamentally, perhaps the popular models are markedly 

incapable of modeling price dynamics in financial markets. Naturally, in this dissertation

5 See Shiller and Perron (1985), Poterba and Summers (1988).
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we examine other models and methods, such as nonlinear models and nonlinear 

techniques, and assess whether they provide a more reliable way to model and test price 

dynamics in financial markets.

L2 Motivation

Inspired by the success of nonlinear dynamic analysis in the physical sciences, 

researchers in economics and finance started to apply nonlinear models in their research. 

The overlapping generation model of utility maximization by Benhabib, Day, and 

Grandmont (Grandmont, 1985), for example, is a nonlinear dynamic model. Savit (1989) 

also used a nonlinear deterministic chaotic model in an option-price model. Aiyagari, 

Eckstein, and Eichenbaum (1985) derived a switching stochastic model for prices of 

storable goods. Hsieh (1988) developed a nonlinear stochastic rational expectation model 

of exchange rates under central bank interventions. Finally, Lai and Pauly (1988) 

formulated a model for foreign exchange rates with a varying conditional variance. These 

theoretical studies of nonlinear dynamic models in economics and finance are the 

motivations for my study and application of nonlinear statistical methods to futures 

prices. To see why this is so consider the following.

Many findings based on the study of nonlinear dynamics in the physical sciences 

are very relevant to financial economics. For example, a nonlinear system can generate
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a deterministic chaotic time sequence that appears to be random.6 And it is well known 

that price movements in financial markets appear random. Physical sciences’ findings 

also revealed how a nonlinear system can evolve from the motion of regularity to the 

motion of chaos (irregular or unpredictable), and found evidence characteristic of a 

chaotic time sequence. But most importantly, the physical sciences developed methods 

that can be applied to analyze any nonlinear system. More specifically, physicists showed 

how to study the properties of a complex multi-dimensional dynamic system based on a 

single observed variable.7 They tell us that, for instance, if a dynamic system is 

governed by a two-dimensional equation with two variables, we can derive the properties 

of the system from one observed variable. This result is fundamentally important in our 

study, because if other endogenous variables also enter the system in determining 

financial prices, then without knowing these "other" variables, we can still investigate 

the properties of the system just by using the price series alone. The rich features of 

nonlinear model and the foundations for analyzing nonlinear models found in physical 

sciences further motivate us to use nonlinear models in economics and finance which is 

the theme of this dissertation.

Accompanying the studies in nonlinear dynamic system and deterministic chaos 

has been the development of methods used to detect a chaotic time sequence (which looks 

random but is not random). These methods, however, do not give us test statistics.

6 See May (1975), Ott (1981), Barnett and Chen (1989), Baumol and Benhabib 
(1989).

7 This is due to a theorem by Takens (1983).
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Furthermore, they are not intended to deal with stochastic time-series processes. And 

some empirical studies in finance are leaning towards nonlinear stochastic model rather 

than nonlinear deterministic chaotic model. So recently some statistical tests of 

nonlinearity, which had not been used much in the past, have started to attract new 

interest in econometrics and financial markets. Moreover, a new statistical test has been 

developed with techniques from the physical sciences. The major part of this dissertation 

is exactly focused on the statistical tests that can detect nonlinearity.

Three statistical tests investigated in this dissertation are the BDS, TAR-F, and 

Q2 test. The BDS statistic is based on correlation integral, and is designed to test whether 

a time series is independently and identically distributed (IID). One major advantage of 

the BDS statistic is that it can detect nonlinear serial dependence in time series. This is 

a situation where the traditional technique of autocorrelation and autocovariance fails 

because they can not detect nonlinear serial dependence. When the BDS is applied to the 

linearly fitted data, it can be used to detect nonlinearity. The BDS statistic can be also 

applied to the residuals of the forecasting model for testing the adequacy of the model. 

The TAR-F test can also detect nonlinear time series process. And the Q2 test can detect 

autocorrelation in the squared values of time series. The Q2 test is especially useful for 

detecting autoregressive conditional variance in time series where the linear technique of 

autoregressive test fails. These interesting properties of the three tests are primarily the 

reasons for these tests being selected to be studied in this dissertation.

The next step in study of financial prices after the detecting of nonlinear 

dependence is the modeling of nonlinear dependence in financial prices. Two nonlinear
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econometric models are relevant to the price changes in financial markets: the threshold 

autoregressive (TAR) model and the generalized autoregressive conditional 

heteroskedasdcity (GARCH) model. The two models are employed in this dissertation 

for modeling futures prices. The TAR model of Tong (1978) represents a model which 

has nonlinearity in conditional mean. The applications of the TAR model has shown that 

it can produce features such as limit-cycle, amplitude dependent frequencies, and jump 

phenomena. All these features have been observed in economics and finance. The TAR 

process can model the asymmetric and periodic behavior seen, for example, in sunspot 

data and Canadian LYNX data.8 The GARCH model of Bellerslev (1986) assumes that 

the current value of the time series conditioned on past information has a normal 

distribution, where the variance of the distribution is an autoregressive process on both 

of the past values and of past variances. This feature is especially useful for analyzing 

price volatility in financial markets.

LI Objectives

The discussion in last section shows the motivations for study nonlinear statistical 

tests, and the motivations for applying these tests and the two nonlinear econometric 

models to futures prices. This section sets the objectives of the dissertation. They are: 

a) to investigate the finite sample properties of three test statistics (the BDS statistic, the 

TAR-statistic, and the Q2 statistic) using the Monte Carlo simulation and Hendry’s (1984)

8 See Tong and Lim (1980), and Tsay (1989).
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response surface methodology; b) to apply the three tests in analyzing of price changes 

in futures markets; c) to use two nonlinear models (TAR and GARCH model) for 

modeling price changes in futures markets.

The three statistical tests discussed in last section have the ability to detect 

nonlinear serial dependence in time series data. But their exact finite sample distribution 

can not be derived. Thus the asymptotic distribution of the tests is used in the empirical 

analysis of economic and financial time series data. In this case it is important for 

researchers to know how does the finite sample distribution compare to the asymptotic 

distribution. Therefore the first objective of this dissertation is to learn the finite sample 

properties of the three statistical tests using Monte Carlo experiments. Specifically this 

dissertation will answer how well do the finite sample results of the tests approximate the 

asymptotical results under the null hypotheses of the tests. This dissertation will also 

investigate how rapidly does the power (i.e., the rejection frequency of the null 

hypothesis) of the tests approach unity under different circumstances when the alternative 

hypotheses of the tests are true.

The other objective of this dissertation is to apply the three tests to time series of 

futures prices. In the process, I will show what will be lost by using old testing method 

of autocorrelation and what will be gained by using the new tests. Then I will test 

whether futures prices have serial dependence, whether the serial dependence is linear 

or nonlinear. I will also demonstrate how these new statistical tests can be used for 

detecting, identifying and modeling of nonlinear serial dependence in time series data.

The final objective of this dissertation is to apply the TAR model and the GARCH
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model to futures prices if the tests indicate such nonlinearity exists in futures prices. The 

models will be examined to see whether they can describe price movements in futures 

markets. The relation of the estimated nonlinear models with the financial theories and 

models will also be discussed.

1A Methodology

To accomplish the objectives of this dissertation, we employ the following 

methods: a) Monte Carlo experiment for deriving the finite sample properties of the three 

tests, i.e., the BDS test, the TAR-F test, and the Q2 test; b) calculation of the three test 

statistics which are needed for Monte Carlo investigation of the finite sample properties 

of the tests and for application of the three tests to futures prices; c) estimation of the 

two econometric nonlinear time series models, the TAR model and the GARCH model, 

for modeling of futures prices.

In order to study the finite sample properties of the three test statistics, Monte 

Carlo method is used. The Monte Carlo method is a well known simulation procedure. 

It is used primarily for solving a variety of problems which are too difficult to solve 

analytically.9 As the example, because the exact finite sample distribution of the three 

test statistics can not be derive analytically, we employ Monte Carlo methods to 

investigate the finite-sample performance of the tests based on an empirical finite-sample

9 The are two major applications of Monte Carlo method. One is for calculating 
results of complicated integration. The other is for investigating the statistical properties 
of estimate or test statistic. The later is used in this dissertation.
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density. The empirical finite-sample density is based on simulated time-series. These 

simulated time-series can be independently and identically distributed (IID), or have 

linear or nonlinear serial dependence. The means, the standard deviations, and the 

rejection frequencies of the test statistics can be calculated from the replicated statistics 

on the simulated samples and compared with asymptotic results. In this manner we can 

assess how well the finite sample distribution approximates the asymptotic distribution. 

The means, the standard deviations, and the rejection frequencies of the test statistics are 

also regressed on the sample size and the parameters of the DGP to obtain the response 

surfaces of the test statistics. The response surface provides a statistical model that 

summarizes the properties of a tests under different values of the DGP parameters and 

under different sample sizes.

The BDS statistic is calculated from the correlation integral of the time series. 

Under the independently and identically distributed (HD) null hypothesis, the BDS 

statistic is asymptotically standard normal distributed. The TAR-F statistic is calculated 

from the recursive estimation of the arranged least square regression of the time series. 

Under the null hypothesis that the time series is linear, the TAR-F statistic has an F- 

distribution. The Q2-statistic is calculated from the portmanteau test of the squared value 

of the time series. Under the null hypothesis that there is no autocorrelation in the 

squares of the time series, the Q2 statistic has a x2-distribution.

One of the nonlinear models which will be applied to the price changes in the 

futures markets is the GARCH model. The GARCH model, which assumes that the 

current variance of the time series is an autoregressive of the past squared values of the
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time series and of the past variances, can be used to study price volatility in financial 

markets. The estimation of the GARCH model is obtained using the maximum likelihood 

algorithm developed by Berndt, Hall, Hall, and Hausman (1974).

The other nonlinear time series model which will be applied to futures prices is 

the threshold autoregressive model. The major steps for estimating the threshold 

autoregressive model are identification of the threshold lag, locating the threshold values, 

and estimating the AR coefficients in each threshold region. To accomplish these, first 

we need to calculate the TAR-F statistic with different threshold lags and chose the one 

with the largest test statistic. And then run the arranged recursive regression with this 

threshold lag, plot t-ratio of the AR coefficient at each recursive step. The places where 

the t-ratio has large changes are the locations of the threshold values. After obtaining the 

threshold lag and the threshold values we can estimate the threshold autoregressive model 

using ordinary least square method.

1.5 Overview

This dissertation is organized as follows: after the introduction in Chapter 1, 

Chapter 2 provides an overview of the analytic foundation to the dissertation. It discusses 

the financial economic models for price changes in financial markets, the three new test 

statistics which will be studied and applied to analyze the price changes in futures 

markets, and the two econometric models which will be used to model the price changes 

in futures markets. The Monte Carlo experiments for studying the finite sample
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properties of the three tests will also be discussed in Chapter 2.

Chapter 3 reviews in detail the theories on price movement in financial markets, 

the efficient market hypothesis, the random walk model, the martingale model, the mean- 

reverting model, the market anomalies, and the futures markets from which the price 

movements will be analyzed and modeled in this dissertation.

Chapter 4 discusses the important results from research of nonlinear dynamics 

which are relevant to the study of price changes in financial markets. The three test 

statistics, the BDS statistic, the TAR-F statistics, and the Q2 statistics are discussed in 

the chapter. Two econometric nonlinear time series models, the threshold autoregressive 

model and the GARCH model will also be discussed.

In Chapter 5, the Monte Carlo method and experiment design are discussed. 

Chapter 5 also reports the results of the Monte Carlo study of the finite sample properties 

of the new test statistics. Estimates of empirical power and size of three tests are also 

discussed.

Chapter 6 details the empirical studies of price changes in futures markets, we 

will describe the data, analyze the univariate properties of the data, present the test 

results from the three test statistics, and examine how well can the threshold 

autoregressive model and the GARCH model fit the price changes in futures markets. 

Finally, Chapter 7 concludes the dissertation.
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CHAPTER 2 

ANALYTIC FOUNDATION AND OVERVIEW

2.1 Introduction

This chapter describes the analytic foundation of the dissertation. In this chapter 

we briefly discuss theories on financial price determination, economic models of price 

movements in financial markets, the properties of some statistical tests used in financial 

economics, the nonlinear econometric time series models for studying financial prices, 

and Monte Carlo experiments for investigating the finite sample properties of the new 

test statistics. This chapter serves as an overview. A detailed discussion of these topics 

is presented in the following three chapters.

The major components of this dissertation are organized and linked as follows. 

First we will discuss the important theory of financial economics that serves as a 

principle to econometric model building, the efficient market hypothesis. Then we will 

review the financial economic models that satisfy the efficient market hypothesis. We will 

also review the previous methods for testing these models and the empirical results which 

either support or reject these models. Based on this review, we will discuss the short 

comings of previous testing methods, and the need for nonlinear methods and models to

14
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study price movements in financial markets.

Next we will discuss the need for nonlinear models when modeling complicated 

time series data as found in financial economics. Then we will review the new statistical 

tests which are capable of detecting nonlinear serial dependence in time series data. Two 

econometric nonlinear time series models and the associated estimation methods will also 

be discussed.

Because the finite sample properties of the new statistical tests are not fully known 

and because they are important for empirical analyzing of economic and financial data, 

we use Monte Carlo experiments to investigate them. The results of the Monte Carlo 

experiments will be presented and discussed in this dissertation.

Finally after investigating the finite sample properties of the tests, we will apply 

them, and two econometric nonlinear time series models, to futures prices. We will test 

whether the futures prices have nonlinear serial dependence. After modeling futures 

prices, we will discuss the estimated models and their relationship to the financial 

economic theories and models.

22 Theories and Models in Financial Economics

One important theory in financial economics is the efficient market hypothesis. 

The efficient market hypothesis requires that market prices reflect all information. In this 

case it is impossible to build a predictive model based on the information and formulate 

a profitable trading strategy.
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The efficient market hypothesis (EMH) can be divided into three levels if we sort 

information into three categories.1 The weak-form EMH asserts that prices fully reflect 

information contained in historical prices. The semi-strong-form EMH asserts that asset 

prices reflect not only historical price information but also all publicly known information 

relevant to the asset. The strong-form EMH asserts that all relevant asset information, 

including public, private, and historical price information, is fully reflected in asset 

prices.

In this dissertation, I focus on the weak-form EMH and study the relationship 

between current price and past prices. Three financial economic models, i.e., the random 

walk model, the martingale model, and the mean-reverting model are examples of models 

which relate current price with past prices and which satisfy the weak-form EMH. The 

following is an overview of these models.

Random Walk Model

The random walk model of price changes in financial markets states that price 

changes are random. That is, they are independent across time, and have identical 

distribution (IID) for all periods with zero mean. It can be written as:

yt - yt., = et , et is HD with zero mean,

1 Roberts (1967) first made the distinction between three forms of EMH. Later many 
others, particularly Fama (1970 and 1991), have refmed the definitions of three forms 
of EMH.
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where yt is the price (or the log price) of the asset at time t. When price changes follow 

the random walk model, the weak-form EMH will be satisfied. Because if we take the 

expected value of price change, then:

E(yry«-i) =  Efet) =  0 .

Therefore the expected price change and the expected return will be zero for the random 

walk model and, on average, there will be no chance of making a profit from trading in 

the market.

Martingale Model

The martingale model states that the expected value of price in period t 

conditioned on the information available at t-1 is the price in period t-1, that is:

E(y,|It.i) =  y,.i ,

where 1^ is the information of historical prices at time t-1. The martingale model is less 

restrictive than the random walk model because it neither requires price changes to be 

independent nor identically distributed.

Another expression of the martingale model is2:

2 See Leroy (1989).
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E[(yt-yt.,) | I,.i] =  0 .

This shows that the expected price change is zero, so on average it will be impossible 

to make profit from trading in the market and, consequently, the martingale model also 

satisfies the weak-form EMH.

Mean-Reverting Model

The mean-reverting model suggests that financial prices follow a random walk 

over the short-run, but over long-run they maintain a mean-reverting process in which 

prices revert to their mean (such as the fundamental value). From its definition, we can 

write the mean-reverting model as follows:

yt =  (y,-i +  +  fdt-i) * et is HD with zero mean,

where the first term on right hand side is the random walk component, and the second 

term f(It.,) represents the mean-reverting component.

In the mean-reverting model, financial prices follow random walk over the short- 

run, so prices are unpredictable. Over a long-run prices are also unpredictable because 

the "mean" to which prices revert is itself unpredictable.3 Therefore when prices follow 

mean-reverting model, on average there will be no chance of marking profit from

3 See Friedman (1984) and the discussion in Section 3.6 of this dissertation.
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Previous Testing Methods and Results of Empirical Study

The empirical test of the weak-form EMH has mainly focused on whether 

financial prices are predictable based on past prices. Some researchers have investigated 

the autocorrelation of prices, while others looked predictive behavior of financial-price 

models. But no conclusive evidence has emerged found in support of or against the weak- 

form EMH.

Most of the earlier work on the test of the random walk model had relied on the 

study of the distribution of the returns. The spectral analysis and autocorrelation method 

were also used to test the random walk model. These tests generally did not reject the 

random walk model. However, the variance-ratio test on stock returns provides us with 

evidence against the random walk model.

One test of the martingale model is to examine if past prices can be used to 

predict future prices and if the expected price change is zero. However, this test is a joint 

test of the predictive model and the martingale model, it has model specification problem 

and is difficult to be implemented.

The test of the mean-reverting process is based on the autocorrelation method. 

Using the autocorrelation test, some researchers have shown the result in support of the 

mean-reverting process. But later it is argued that the calculated test statistics in these 

studies are too low and the results are not statistically significant.
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The testing methods used in these studies are incapable of detecting nonlinear 

serial dependence in time series. For testing the weak-form EMH and the martingale 

model, there is model specification problem for the predictive model. There were also 

increasing empirical evidence against the models of random walk, martingale, and mean- 

reverting. If financial prices follow a nonlinear process, the previous linear methods will 

be deficient for analyzing financial prices. Therefore we need to seek new techniques and 

models for studying financial prices.

2.3 New Test Statistics

The three newly developed test statistics, the BDS statistic, the TAR-F statistic, 

and the Q2 statistic, are studied and then applied to futures prices in this dissertation. 

These three test statistics are particularly useful in financial economics because they have 

the ability to detect nonlinear serial dependence in time series where the linear method 

of autocorrelation sometimes fail. They can also help us to identify the nature of serial 

dependence and to model financial prices.

The BDS Statistic

The BDS statistic is developed from the correlation integral for detecting time 

series which is not independently and identically distributed (IID). The BDS statistic is 

defined by:
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where T is the sample size, e is the correlation length, M is the embedding dimension, 

CM T(e) is the correlation integral, and oMiT(e) is the estimate of the standard error under 

the IID null hypothesis. And the correlation integral is given by:

where indicator function Ie(.) is defmed by:

It(x(M)i,x(M)j) = 1  if sup norm || x(M)r x(M)j fl <e ,

I((x(M)t,xCM)j) = 0 elsewhere

Under the IID null hypothesis, the BDS statistic will be asymptotically standard normal. 

Under the alternative hypothesis, the BDS statistic will not have standard normal 

distribution and will have large frequency of being rejected when the alternative time 

series departs from the IID null hypothesis to a certain degree.

The BDS statistic can be applied to time series to detect the serial dependence in 

time series. It also can be applied to the linear filtered data to detect nonlinearity in time 

series. Another use of the BDS statistic is to test the model adequacy by checking 

whether the residuals of the model are IID.
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Ths.TARrF, Statistic

The TAR-F statistic is designed to detect time series of the threshold 

autoregressive process. The test statistic is given by:

w, -
]£ e } l ( T - d - b - p - h )

where p and d are respectively the AR order and the threshold lag in the test, et are the 

standardized predictive residuals from the arranged AR recursive regression of the time 

series, and e, are the residuals of the regression of et on the lagged values of the time 

series, b is the starting point of the arranged recursive regression, h=m ax(l+p-d, 0).

Under the null hypothesis that the time series is linear, the TAR-F statistic has 

an F-distribution with p+1 and T-d-b-p-h degrees of freedom. If the time series has 

model changes in different regions of the threshold variable, then the TAR-F statistic will 

not have an F-distribution and will fall into the rejection range with large frequency if 

the alternative time series is sufficiently apart from the linear hypothesis.

The Q2-statistic

The Q2-statistic is developed for identifying the nonlinear time series with 

autocorrelation in squared values of time series. The Q2-statistic is defmed by the 

following:
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where r(k) is the autocorrelation function of the squared values of the time series.

The null hypothesis of the Q2-statistic is that the time series has no autocorrelation 

in its squared values. Under the null hypothesis, the Q2-statistic is distributed x2(P)- 

When the time series has autocorrelation in its squared values, then the Q2-statistic will 

not have the x2-distribution and will fall into the rejection region with large frequency 

when the autocorrelation in the squared values of the time series is not too small. The 

Q2-statistic is an ideal technique for detecting ARCH type time series because the method 

of autocorrelation generally fails.

Finite Sample Properties of New Test Statistics

The three statistical tests reviewed in this section have ability to detect nonlinear 

serial dependence. However, we do not have full information on the finite sample 

properties of the tests. Past studies on these tests have only shown the results of the tests 

at few sample sizes, usually less than three sample sizes, under the null hypotheses of 

the tests. Under the alternative hypotheses of the tests, the results of the tests were 

known only at few sample sizes for several types of time series with one or two 

parameter values of the time series, where the parameter values of the time series 

represent the departure from the null hypotheses of the tests.

Clearly, our knowledge on the finite sample properties of these tests so far are
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very limited. The finite sample properties of these tests are important for empirical study 

of economic and financial data where the sample size is always finite. Thus we need to 

know the results of the tests at more sample sizes, for more types of time series, and 

with more parameter values of the time series. The Monte Carlo method discussed in the 

next section is a effective tool for study the finite sample properties of these tests.

2A Monte Carlo Experiment

The three new statistical tests discussed in last section are capable of detecting 

nonlinear serial dependence in time series data, and they can help us model financial 

price movements. But the behavior of the tests with finite sample is not fully understood. 

Because the finite sample properties of these tests can not be derived analytically, the 

investigation of the finite sample properties of these tests has to rely on the method of 

Monte Carlo experiment.

Monte Carlo experiment is a procedure in which quantities of interest are studied 

based on generated sample data. A Monte Carlo study usually has many experiments. 

Each experiment will have: a) the quantities of interest, which in this dissertation are the 

test statistics; b) a data generating process (DGP); and c) some number of replications, 

where each replication involves generating a single set of data from DGP and calculating 

the quantities of interest. Usually a set of related experiments are conducted in which the 

sample size and other aspects of the DGP (such as parameter values) are varied in order 

to see how such variations affect the quantities of interest.
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When the number of experiments is small, the results of Monte Carlo experiments 

can be presented in tabular form. When the number of experiments is large, as in this 

dissertation, the results of Monte Carlo experiments are difficult to present in tabular 

form. Therefore we use response surfaces to statistically summarize Monte Carlo 

experiments results, where the quantities of interest are related to the sample size and to 

other aspects of the DGP that vary across the experiments.

Generating random numbers is an important part of the Monte Carlo experiment. 

The random numbers with uniform distribution U(0,1) are generated first and the random 

numbers with other distributions can be generated by using random numbers of U(0,1). 

In this dissertation, the Multiplicative Congruential Generator and the shuffling method 

are used to generate random numbers of U(0,1), and the Box-Muller bivariate method 

is used to generate random numbers with normal N(0,1) distribution. Finally, other 

DGPs can be derived from these random numbers.

The following are the data generating processes (DGPs) used in our Monte Carlo 

experiments for study the finite sample properties of three tests, where x, is generated 

sample data for Monte Carlo experiments, and et ~  N(0,1) is the error term:

1) DGP of HD Time Series

1.1) Standard normal distribution: x, ~  N(0,1).

1.2) Uniform distribution: x, -  U(0,1).

1.3) Bimodal mixture of normals: x, ~  {0.5 N(0,1) +  0.5 N(a,/32)}.
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2) DGP of Linear Time Series

2.1) Linear autoregressive of order 1: x, = a  x,.t +  et .

2.2) Linear moving average of order 1: x, = a + et .

3) DGP of Nonlinear Time Series

3.1) Nonlinear autoregressive of order 1: x, = a x ^ l-x ^ /fH -X n 2) + e , .

3.2) Nonlinear moving average of order 1: Xt = a eM e,.2 +  et .

3.3) Threshold autoregressive (TAR) process:

Xt = a  x,., +  e, , if x,.r :S 0 ,

Xt =  - a  x,.! +  et , if xM > 0 .

3.4) GARCH process:

x» = ht,/2 et ,

ht =  1 + a  x2,.! + |8 hn .

In the Monte Carlo study of the test statistics, we use four sample sizes and 

several parameter values of DGP for each type of DGP. Then we construct the response 

surfaces of the test statistics showing the effect of sample size and the parameter of the 

DGP on the test statistics. A full discussion of Monte Carlo experimental design is found 

in Chapter S.
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The two nonlinear econometric time-series models which are useful for modeling 

financial prices are the threshold autoregressive (TAR) model and the generalized 

autoregressive conditional heteroskedasticity (GARCH) model. The TAR model has 

nonlinearity in conditional mean, and the GARCH model has nonlinearity in conditional 

variance. These two models are employed for modeling futures prices in this dissertation. 

In the Monte Carlo study of the new statistical tests, we also use the special cases of 

these tow model in the data generating processes.

The TAR model is defined by:

x, = a®0 +  E ,_ liP a®**, + e0)t , rj. ,^ x tHl< rj ,

where j= l , . . . ,k + l ,  k is the number of threshold regions, p is the AR order, d is the 

threshold lag, x^ is the threshold variable. The threshold values of the model are 

oo =r0<  r, < . . .  < rk < rk+1 = oo; for each j , {e0),} is HD with zero mean and variance o}2. 

This model is a piece-wise linear AR model, since it follows a different linear AR 

processes when the threshold variable x,^ falls into a different threshold region. The 

overall model is not linear when there are at least two regions with two linear processes.

In Chapter 4 and Chapter 6 we will see that in order to estimate the TAR model, 

we first have to select a sufficiently large AR order p, and then calculate the TAR-F 

statistic for a range of threshold lags. The threshold lags at which the TAR-F statistic has
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large values can be used as the possible threshold lag. At the selected threshold lag d, 

we implement an arranged recursive regression, and plot the t-ratios of the AR 

coefficients. The values of the threshold variable at which the t-ratios have large changes 

can be the possible threshold values. Once the threshold lag and the threshold values are 

identified, we can estimate the TAR model using ordinary least squares. More details are 

found in Chapter 4 and Chapter 6.

If financial price changes follow the TAR model, then they are not IID. 

Furthermore, the conditional mean of the price changes is not constant. Therefore the 

TAR model is not consistent with the random walk model, the martingale model, and the 

mean-reverting model. As to whether the TAR model violates the weak-form EMH, we 

have to examine whether the TAR model can be used to make profitable trading strategy. 

The second model used in Chapter 6 is the GARCH model. It is defined as:

x, ~  N(0,10 ,

h» oto 4" /3jh,.j .

In this model, the conditional mean of x, is zero, and the conditional variance is ht. The 

conditional variance is an autoregressive process of the past values of the time series and 

of the past variances.

The estimation of the GARCH type is obtained by using the maximum likelihood
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method. For the GARCH model presented here, its log likelihood function is4:

M 0 ) =  1,(0),

1,(0) = -(1/2) log h, - (1/2) x ,V  ,

where T is the sample size. The Bemdt, Hall, Hall and Hausman (1974) algorithm will 

be used to obtain the maximum likelihood estimates.

The simple GARCH model discussed here has zero conditional mean. In a more 

general GARCH models we can have non-zero conditional mean, but the estimation of 

the model is similar to the estimation of the simple GARCH model.

When price changes follow the GARCH model, they are not IID. In this case the 

price changes violate the random walk model and the mean-reverting model. If the 

GARCH model of the price changes has autoregressive conditional mean, the price 

changes also violate the martingale model. In the later case, we have to investigate if the 

GARCH model can be used to make profitable trading strategy before we conclude 

whether the prices obey or violate the weak-form EMH.

IA Summary

One important theory in financial economics is the efficient market hypothesis

4 Apart from some constant, see Bollerslev (1986).
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(EMH). The weak-form EMH asserts that financial prices reflect information of historical 

prices. Thus it is impossible to use historical prices to formulate a profitable trading 

strategy.

The random walk model, the martingale model, and the mean-reverting model are 

examples of models that satisfy the weak-form EMH. If financial prices follow these 

models, then on average it will be impossible to make a profit from trading. These 

models, to a certain extent, helped us understand price movements in financial markets. 

However, there are empirical studies which reject these models.

Earlier methods in the study of price movements in financial markets were limited 

to the techniques of autocorrelation, calculation of distribution, and linear models. These 

methods can fail to detect nonlinear serial dependence in financial prices. If there is a 

nonlinear component in financial prices, these methods can not help us analyze and 

model the nonlinearity in financial markets either.

The three new test statistics, the BDS statistic, the TAR-F statistic, and the Q2 

statistic, has the ability to detect nonlinear serial dependence in time series where the 

linear method sometimes fail. These test statistics can also help us identify and model 

serial dependence in time series, which is very important for studying price movements 

in financial markets.

For these three test statistics, however, their finite sample properties are not fully 

known. In this dissertation we use Monte Carlo simulation to study the finite sample 

properties of these three test statistics. In the Monte Carlo experiment, we consider 

several data generating processes (DGPs), many parameter values of the DGP, and four
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sample sizes. Finally we use the response surface to present the results of Monte Carlo 

experiments.

Two nonlinear econometric time series models that are useful for studying price 

movements in financial markets are the TAR model and the GARCH model. They are 

applied in this dissertation for study of futures prices. The TAR model is an example of 

nonlinear time series model which has nonlinearity in conditional mean. The TAR model 

is inconsistent with the random walk model, the martingale model, and the mean- 

reverting model. The GARCH model has conditional variance which can be useful in 

studying price volatility in financial markets. The GARCH model is inconsistent with the 

random walk model and the mean-reverting model. When GARCH has autoregressive 

conditional mean, it is also inconsistent with the martingale model. To determine whether 

the TAR model and the GARCH model violate the weak-form EMH, we have to 

investigate if the conditional mean of these models can be used to formulate profitable 

trading strategy.
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FINANCIAL ECONOMICS AND FUTURES MARKETS

3.1 Introduction

Financial markets play an important role in economics. The movements of 

financial price are always concerned by investors and researchers. Daily news reports on 

television, radio, and newspaper inform us, for example, of latest stock market index 

values, currency exchange rates, and gold prices. For most of time, financial prices do 

not change very much. But some times financial prices have substantial changes. For 

example, the market break of stock market on October 19,1987 shocked the nation and 

the world, and the volatile oil price changes during the gulf war arose concerns of 

industrial countries. These sudden changes of financial prices will not only affect 

investors’ wealth, but they will also have short term and long term impact on industries 

and economy.

For investors and scholars, it is often desirable to monitor price behavior in 

financial market frequently and try to understand the probable development of financial 

prices in the future. The current and future interest rates will affect people’s decision on 

purchasing a house and financing. The changes of commodity prices will alter producer’s

32
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decisions on output, manufacture’s decision on production procedure, and consumer’s 

consumption pattern. The changes of stock prices will affect an investor’s decision to 

adjust the composition of investment portfolios. While people are planning vacation 

abroad, their decision of whether to buy the foreign currency now or buy it at the 

destination will be depended upon the behavior of currency exchange rates.

Financial market prices are related to daily economic activities. And the financial 

market prices are constantly changing. A fundamental hypothesis about price movements 

in financial markets is the efficient market hypothesis (EMH) which states that the prices 

of an asset fully reflect all information. When the market is efficient, prices fully reflect 

all information and it will be impossible to make excessive profits in the market base on 

the information.

The early studies on security price were that of Williams (1938) and Graham and 

Dodd (1934). They stated that securities have intrinsic fundamental values which equal 

to the discounted cash flows of securities. The determination of fundamental values of 

a security involves analyzing demand for the products, possible future development of 

substitutes, the probability of recession, changes in regulatory environment, and other 

information relevant to future profitability of the firm associated with the security. The 

method of analyzing financial prices base on these concepts is called fundamental 

analysis. Unfortunately, evidence have shown that the fundamental analysis does not 

work well in predicting financial asset prices. Thus other models were developed to study 

financial prices.

The random walk model, developed at the turn of the century, did not get much

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

34

attention of economists until 1950s and 1960s. A basic version of the random walk model 

assumes that the time series of an asset’s price changes is independent and identically 

distributed with a normal distribution. Empirical studies have suggested that distributions 

other than the normal distribution may be more appropriate for the random walk model, 

and some studies even rejected random walk model of price movements in financial 

markets.

The martingale process and mean-reverting process are the two more recent 

models describing price movements in financial markets. The martingale process permits 

the price changes to be dependent and distributed differently, but requires the expected 

price change to be zero. In a mean-reverting process, the price changes are the combined 

results of a random walk and a process which reverts to the mean of the asset price (or 

the fundamental value of the asset).

In this chapter, I briefly review the basic concepts and the properties of futures 

markets, on which the empirical study of the dissertation will be based. Then I discuss 

the efficient market hypothesis, the random walk model, the martingale model, and the 

mean-reverting model. The recent findings on market anomalies in financial markets are 

also discussed. A summary section ends the chapter.

3.2 Futures and Futures Markets1

Traditionally, futures markets have been recognized as meeting the needs of three

1 A good literature on this subject is the book by Kolb (1984).
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groups of futures market users: those who wish to discover commodity prices in the 

future; those who wish to speculate; and those who wish to transfer unwanted risk to 

some other party. Kamara (1989) also pointed out that futures markets served as a 

clearing house for information in which informed traders’ information is transmitted to 

uninformed traders. Futures trading also can stabilize the cash market and to improve the 

inter-temporal allocation of resources because the traders in the cash markets have the 

options to store the commodity and trade on futures markets.

In buying or selling a futures contract a trader agrees to receive or deliver a given 

commodity at a certain time in the future for a price that is determined now. In such a 

circumstance, it is not surprising that there is some relationship between futures price and 

the price that people expect to prevail for the commodity at the delivery date specified 

in the futures contract. While the exact nature of that relationship is unclear, the 

relationship is predictable to a high degree. By using the information contained in the 

futures price today, it is possible to form estimates of what the price of a given 

commodity will be at a certain time in the future. The forecast of future price that can 

be drawn from the futures market compare in accuracy quite favorably with other types 

of forecasts. Futures markets serve a social purpose by helping people to form a better 

idea of what the future prices will be, so that they can make their consumption and 

investment decisions more wisely based on the best available information.

Without doubt, however, futures markets also provide the opportunity for 

speculation. Speculators who believe that the price will move away from the current price 

can profit by buying or selling the futures today and make a reverse trade later. And one
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trader’s profit is made from other traders’ losses. But even if one regards speculative 

activity as evil or immoral, there is strong evidence that the presence of speculators 

benefits the other users of futures markets by helping to provide liquidity in the futures 

markets.

Many futures markets participants trade futures in order to avoid some unwanted 

risk. A classical example is that the farmer who trades in futures market to avoid risk 

associated the uncertain price at harvest of the crop he or she is producing. The activity 

of hedging is the prime social rationale for futures trading. By being able to transfer risk 

to other parties via the futures market, economic activity in general is enhanced.

Some people argue that futures prices equal expected future spot prices. For 

example, if the futures price of wheat that will be delivered in six months is $5.34 per 

bushel, then, according to this argument, the market expects the price of wheat to be 

$5.54 six months from now. The expectation is the product of all participants in the 

market, who vote on the correct future spot price by their trading on the price of the 

commodity at the delivery date in the future. If a trader foresees correctly that the 

prevailing futures price of a good delivered in six months exceeds what he expects that 

good to be worth, then he can profit by selling futures contract on that good.

There are three reasons that the equality of futures price and spot price at the time 

of delivery might not hold. First, the risk-bearing services of speculator will be 

forthcoming only if the futures price differs from the expected future spot price. Second, 

the feature of daily resettlement prevalent in futures markets could cause futures prices 

and expected future spot prices to diverge under certain circumstance. Third, there is an
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alternative concept of futures pricing that relies on carrying charges to determine futures 

pricing relationship.

Futures markets participants are divided into two groups: hedgers and speculators. 

Hedgers enter the futures markets to reduce a pre-existing risk, while speculator trade 

in the hope of profit. Speculators in the futures markets bear certain risks. Risk-averse 

speculators will trade in the market only if the expected profit is large enough to 

compensate for risk exposure. It is generally believed that most participants in financial 

markets are risk averse.

The trader who buys a contract is said to have a long position. The seller of a 

contract is said to have a short position. A speculator will take a long position in the 

futures markets only if the expected future spot price of the commodity is greater than 

the current futures price. Otherwise, the speculator must not expect to make any profit. 

On the other hand, a hedger who wants to avoid unwanted risk need to take a short 

position. The hedger must be willing to sell the futures contract at a price that is less 

than the expected future spot price of the commodity. Otherwise, the hedger cannot 

induce the speculator to accept long side of contract. For the same reason, if the hedger 

needs to be long to reduce his risk, the speculator has to be short. Then the hedger has 

to buy the futures contract at the price higher then the expected future spot price. In this 

case, the futures price will be higher than the expected future spot price. From this point 

of view, the hedger is, in effect, buying insurance from the speculator. The hedger 

transfers his unwanted risk to the speculator, and pays the speculator for bearing the risk. 

The payment to the speculator is the difference between the futures price and the
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expected future spot price. Even so, the speculator does not receive any sure payment. 

The speculator must still wait for the expected future spot price to materialize to capture 

the profit expected for bearing the risk.

Hedgers are not confined to the hedging activities, they may also participate in 

speculation. Kamara (1989) argued that the optimal hedge is generally a mixture of 

hedging and speculation. A producer will not only use the futures markets to hedge on 

price uncertainty, but will also use the futures price to make production decision which 

involves speculating on futures prices and taking a certain futures position. Therefore 

both hedgers and speculators speculate. While speculators speculate on futures price level 

alone (trading followed by reverse trading in hope of profiting from intervening price 

changes), the hedgers speculate on both futures price level and the price difference 

between futures price and spot price.

•The types of futures contracts that are traded fall into five categories. The 

underlying good traded may be an agricultural or metallurgical commodity, an interest- 

earning asset, a foreign currency, or a stock index. Contracts for more than forty 

different goods are currently available.

For agricultural commodity futures, contracts are traded in grains (com, oats, and 

wheat), oil and meal (soybeans, soymeal, and soyoil, and sunflower seed and oil), 

livestock (live hogs and cattle and pork bellies), poultry (eggs and live broilers), forest 

products (lumber and plywood), textiles (cotton), and foodstuffs (cocoa, coffee, orange 

juice, potatoes, and sugar). For many of these commodities, several different contracts 

are available for different grades or types of commodity in question. For most of the
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good, there are also different contracts with different delivery times.

The metallurgical futures includes the genuine metals, as well as petroleum 

contracts. Metals and petroleum are treated in a similar way because both of them share 

a important common characteristic: they can be stored indefinitely. Among the metals, 

contracts are traded on gold, silver, silver coins, platinum, palladium, and copper. Of 

the petroleum products, heating oil, crude oil, gasoline, and propane are traded on 

futures markets.

The futures trading on interest-bearing assets started only in 1975, but the growth 

of this market has been tremendous. Today contracts are traded on Treasury bills, notes, 

and bonds, on bank Certificates of Deposit, Eurodollar deposits, and GNMAs, which are 

government backed single-family mortgages.

Active trading of foreign currency futures dates back to the inception of freely 

floating exchange rates in the early 1970s. Contracts are traded in the British pound, the 

Canadian dollar, the Japanese yen, the Swiss franc, and the West German mark. 

Contracts are also listed on French francs, Dutch guilders, and Mexico peso, but these 

have met with only limited success. The foreign exchange futures market represents one 

case of a futures market existing in the face of a truly active forward market, which is 

many times larger than the futures market. Many people believe that the present of the 

forward market deterred the introduction of foreign exchange futures.

The last group of futures contracts is for stock indices. Beginning only in 1982, 

these contracts has been quite successful, with trading on four broad market indices. Four 

different exchanges trade contracts on three different indices: the Standard and Poor’s
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500, the Major Market Index, the New York Stock Exchange Index, and the Value Line 

Index. In addition, numerous contracts on industry indices are now trading as well. The 

stock index contracts do not admit the actual delivery of the underlying asset. A trader’s 

obligation must be fulfilled by a reversing trade or a cash settlement at the time of 

maturity.

3.3 Financial Price Movement and Efficient Market Hypothesis

Prices of financial assets, such as the prices treasury bills, stocks, and futures, 

are determined in the markets, just as the price of any good or service. The prices of 

treasury bills and bonds reflect the rate of interest in the economy. The price of a stock 

reflects the expected future returns from holding the stock. The price of a commodity 

futures reflects the expected supply and demand of the commodity down the time path. 

The prices of futures, including financial futures and currency futures, also reflect fees 

people are willing to pay to avoid future transaction uncertainty.

Financial asset prices are influenced by people’s opinions. Different people have 

different opinions about the future path of economic activities and the future path of asset 

prices. These opinions will be translated into selling and buying in the market. 

Transactions involving financial assets can be completed quickly in the markets. The two 

defining characteristics of financial assets, opinion-influenced prices and short transaction 

time, cause financial price changes to be frequent and difficult to forecast. As time goes 

by, new information (economic or non-economic) continuously emerges and affects
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people’s opinions about the future path of economic activities. People will adjust their 

holdings of financial assets accordingly. As a result, financial prices will constantly 

change when the markets are open for trading.

Then, how will financial asset prices change over the time? Theoretically, if 

current prices provide arbitrage profit opportunities, then these opportunities will be 

pursued until price changes cause then to disappear. Suppose it is a certainty that the 

price of an asset will drop significantly tomorrow. Selling short today (borrowing the 

asset today while agreeing to repay some time later) and buying back tomorrow would 

yield a profit. Therefore the price of the asset will drop instantly, making this scheme 

unprofitable. The opposite process is set in motion if the price of an asset is certain to 

rise tomorrow.

In theory, financial asset prices will move in certain course and not allow profit 

from selling and buying over time. It will not allow profit from changing positions across 

different assets either. If one asset provides higher expected returns than others, then its 

price will be higher, its return derived from price change later will be reduced until its 

expected return equal the expected return of the others. Of course, when we calculate the 

expected returns we also have to deduct the risk premiums. Some riskier assets may have 

higher nominal expected returns, but after deducting the risk premium their expected 

returns will be equal to the expected returns from other assets.

As mentioned in Chapter 1, a fundamental hypothesis regarding the way prices 

change in financial markets is the efficient market hypothesis (EMH). A market is 

efficient if the prices in the market fully reflect all information contained in a given
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information set. The information set can include historical prices, trading volume, 

publicly known market information, economic information, political information, insider 

corporate information, insider government information, etc.. Roberts (1967) proposed 

that three forms of market efficiency can be defined according to the domain of the 

information set: the weak-form, the semi-strong form, and the strong form efficient 

market hypothesis.

The weak-form efficient market hypothesis claims that prices in a market fully 

reflect all information contained in past prices. The semi-strong form EMH claims that 

market prices fully reflect all publicly available information, including past volume and 

price data. The strong form EMH states that market prices reflect all information, 

whether public or private. Private information includes information possessed only by 

corporate insiders and government officials2. If the market is efficient, then given the 

information set, we can not expect to make profit in the market, because the prices fully 

reflect the information.

Fama (1970 and 1991) provided interpretations and tests for the three types of 

market efficient hypothesis, these are: the weak-form test, the test for return 

predictability, testing how well do past returns predict future returns;3 the semi-strong- 

form test, the event test, testing how quickly do security prices reflect public information

2 See Kolb (1985), Fama (1970, 1991).

3 Fama (1991) also suggested to include other variable such as dividend yield and 
earnings price ratios in testing of weak form EMH. But others, such as Ross (1989) and 
Malkiel (1989), suggested to use just past prices in testing of weak form EMH. In this 
dissertation I take the later position.
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announcements such as dividend, discount rate, or government subsidy; and the strong- 

form test, test for private information, testing whether any investors have private 

information that is not fully reflected in the market prices. The weak-form EMH is the 

least restrictive form of the EMH. If the strong form or semi-strong form EMH is valid, 

the weak-form EMH must be valid also. This dissertation is focused on the weak-form 

EMH, and will study if financial price is predictable from past prices.

Three financial economic models that satisfy the weak-form EMH are the 

martingale model, the random walk model, and the mean-reverting model. The 

martingale model requires the expected price change to be zero. Therefore the expected 

return is zero, and the martingale model satisfies the weak-form EMH. The random walk 

model imposes even stricter conditions. It requires not only that the expected value of 

returns to be zero, but that the returns to be independent and identical distributed.

To test the hypothesis of weak-form market efficiency, a common procedure is 

to investigate the differences between the predicted prices based on historical prices and 

the current prices of the asset. If the time series of price differences has an expected 

value of zero, then prices incorporate all the past information and do not allow excessive 

gain on average. We can see that this test is a joint test of the asset price formation 

model and of the efficient market hypothesis. If the predictive model is not correctly 

specified, the test may lead to incorrect acceptance or rejection of the efficient market 

hypothesis. Therefore linear predictive models should not be used for testing the efficient 

market hypothesis if there is nonlinearity in the time series of financial prices4. While

4 See Fama (1976), and Heimstra (1990).
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many studies indicated linear models do not work for price changes in financial 

markets,5 some recent studies have found the presence of nonlinearities in financial 

prices6.

Even if we set aside the question of jointness in the tests of market efficiency, the 

efficient market hypothesis could be violated under certain economic conditions. Danthine 

(1977) pointed out several possibilities: a) the only solution for prices is a comer solution 

- when rational agents are constrained by the availability of goods to exploit excess 

(abnormal) profit and; b) decreasing returns on technology will cause non-zero expected 

price differentials. In addition Danthine stated that the traditional study of market 

efficiency by testing for zero autocorrelation in returns is actually the simultaneous test 

of market efficiency, perfect competition, risk neutrality, constant returns to scale, and 

the impossibility of comer solution. So zero autocorrelation in returns is, for this reason, 

not a proper test of efficiency in the commodity market. Although Danthine’s conclusions 

were based on the commodity cash markets, they extend to other financial markets as 

well.

The efficient market hypothesis also has been attacked by arguments that certain 

trading rules are effective in generating profits. Taylor (1983) presented some evidence 

that trading rules constructed from price-trend models are profitable when applied to six

5 The studies of Working (1934), Cowles and Jones (1937), and Kendall (1953). 
found the serial correlation was essentially zero for price changes in financial markets, 
which basically rejected the linear time series model.

6 See, for instant, Hinich and Patterson (1989), Tsay (1989), Scheinkman and 
LeBaron (1989), Hsieh (1989, 1990).
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futures contracts. This shows that it is possible to use past prices as inputs in trading 

rules and obtain profit in financial markets. This is contrary to the efficient market 

hypothesis.

In the following sections I review several models in financial economics, their 

relation to the efficient market hypothesis, and some empirical tests of these models.

1 4  Random Walk Model

The random walk model of price movements in financial markets was first 

developed by Bachelier (1900) at the beginning of the century, and modified later by 

many others. Bachelier, in his original doctoral dissertation paper, built a random walk 

model for financial price movements based on the following assumptions: a) the price 

change is stochastic and has a probability distribution; b) the price changes are 

independent, i.e., the price change in one period will not depend on or affect the price 

change in another period; c) the time series of the price changes of a particular asset will 

have an identical probability distribution at each point in time. These three assumptions 

comprise what is known today as the HD property of the random walk model.

From the above assumptions, how can we know the probability distribution of 

price changes in financial markets? Suppose PX(tldx is the probability that the price 

changes by x during the time span of t„ and PZitl+ad2  is the probability that the price 

changes by z during the time span of t i+t2. Then from the IID property of the random 

walk, the probability distribution function of the price changes must satisfy the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

46

integral equation:

r « . H -  / > „ » '« ,  *  (3 A 1 )

which is a continuous stochastic process, like the Brownian motion in heat diffusion 

process. Equation (3.4.1) states that the probability that the price changes by z during 

time tj+tj is the product of probability that the price changes by z-x during time t, and 

probability that it changes by x during time ^  summing over all possible x. In solving 

this integral equation, Bachelier gave the following distribution function as the solution:

PXJ--------l-— exp(— ^ —) (3.4.2)
2nk tm 4nJk2t

where k is a constant related to the variance of the distribution. This equation gives us 

the probability of the price changes by x amount during time interval of t. This solution 

indeed satisfies the integral equation (3.4.1). It is not difficult to see that this is a normal 

(Gaussian) distribution with mean of zero and variance 4irk2t. Bachelier calculated the 

distribution of price changes of French government bond and compared it to the normal 

distribution, and obtained what was considered a very impressive result for that time.

Working (1958) developed a theory of anticipatory price in financial markets 

which justified the random walk model. In the theory, traders are assumed to seek 

information to guide their price formation. A trader can look at many aspects in the 

economy for the information. There are many kinds of information that influence 

financial prices. The information flow is continuous through both public and private
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channels, and with the influence of information the price changes frequently. The 

information itself is unpredictable, so the price change is also unpredictable. From this 

model it is obvious that the price changes in a given period in financial markets depend 

on the information arrives during the trading period and the information flow rate.

In the random walk model, financial prices are patternless, unpredictable, not 

smooth nor deterministic over time. This contradicts the analysis of fundamental values 

and implies that financial prices are exempt from the laws of supply and demand. Roberts 

(1959) pointed out that the assumption that financial prices adjust instantaneously to new 

information, and that financial prices are unpredictable, is what we should expect from 

the efficient market hypothesis and what the random walk model implies. On the other 

hand, if financial prices adjust slowly to the new information and move in a predictable 

manner, then profitable trading opportunities that are not being exploited would exist. 

This would contradict to the efficient market hypothesis.

Bachelier’s solution of random walk model, however, has two problems. First, 

the solution in equation (3.4.2) is not the only solution to equation (3.4.1). Cootner 

(1964) pointed out that there are many probability density functions that satisfy equation

(3.4.1). The binomial, Poisson, geometrical, and compound Poisson distributions, for 

instance, all satisfy equation (3.4.1). For Bachelier’s solution to hold exclusively, the 

density function must: a) be differentiable with respect to time t; b) have first and second 

partial derivatives with respect to price change and; c) have finite mean and variance. 

These assumptions will be examined later. The second problem with Bachelier’s solution 

is that it allows for negative prices. In reality the price of an asset can not fall below
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zero. So Osborne (1959), Samuelson (1955), and Alexander (1961) proposed using log- 

price changes (or returns) rather than actual level of price changes in the probability 

distribution function. Osborne investigated closing stock prices from the New York Stock 

Exchange and found that the distribution of price changes is not normal. Osborne 

obtained a better fit of stock prices by using log price changes. He argued that investors 

look at asset return rather than the price level, and stated that a change in the asset price 

from $10 to $11 has the same psychological effect as a change from $100 to $110, 

because the returns are same in both cases. This justifies the "log-normal" distribution 

of price changes in financial markets.

Early work by Kendall (1953) showed that stock prices appear to follow a random 

walk. Alexander (1961) studied stock prices in various periods and concluded that stock 

price changes also appear to be random over time. But Alexander also noticed that a 

price move, once initiated, tends to persist. In particular, if the stock market has moved 

up x-percent it is likely to move up more than x-percent further before it moves down 

by x-percent. This indicates the price changes in the stock market may not be 

independent from each other.

Lo and Mackinlay (1988) used a variance-ratio statistic to test the random walk 

hypothesis. The idea of their test is that, if the returns of an asset follow the random 

walk and Gaussian distribution, even with heteroskedasticity, the variance of the monthly 

returns should be four times the variance of the weekly returns. The results of variance- 

ratio test on various stock returns led to a rejection of the random walk hypothesis. 

Poterba and Summers (1988) also calculated ratio of variance of K-period return divided
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by K over variance of one-period return and found the ratio decrease with the increase 

of K. And they rejected the random walk model as well.

Random Walk with Stable Paretian Distribution

Compared to the normal distribution, the distributions of log-price changes of 

empirical data show the thick tails (i.e., more observations at both lower end and higher 

end of the distribution compared to the normal distribution). Concerned with the thick 

tails of the distribution of the log-price changes in financial market, Mandelbrot (1963) 

felt that thick tails can be captured by a stable Paretian distribution. Unlike the normal 

distribution, the stable Paretian distribution can have infinite variance. The following is 

the logarithm of the characteristic function7 of the stable Paretian distribution:

log<p(f) = i8r-Y |f|B[l+iP(f/|f|)tan(a7c/2)l (3.4.3)

where i is the square root of -1. The four parameters a , 0, 5, and y determine the 

distribution function. Specifically, a measures the tails of the distribution, S is the 

location of the distribution, y is the scale parameter, and 0 measures the skewness of the 

distribution. When l < a < 2 ,  the mean of the distribution exists and variance of the 

distribution is infinite. For a normal distribution, a=2. If 0=0, then the distribution is 

symmetric.

7 The characteristic function is another way to represent random variable. It is 
defined by p(t) = E(eiu), where x is the random variable.
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The stable Paretian distribution has two important properties: 1) the distribution 

is invariant under addition, that is, the sum of random variables which have stable 

Paretian distribution with same a  and 0 is a random variable which has stable Paretian 

distribution with the same a  and 0, and; 2) the stable Paretian distribution is the only 

possible limiting distribution for independent identical distributed random variables8.

Mandelbrot (1963) studied cotton prices. He computed the sample second 

moments from daily first-differences of the logs of cotton prices for increasing sample 

of from 1 to 1300 observations. As the sample size is increased, the sample moment does 

not settle down to any limiting value but continues to vary in an erratic fashion. The 

sample moment behaved as the stable Paretian hypothesis predicted. The estimate of the 

a  parameter in the stable Paretian distribution revealed that the value of a appeared to 

be 1.7 for the cotton prices being studied, where for normal distribution the value of a 

should be equal 2. This shows that the log-price changes of cotton are better described 

by stable Paretian distribution rather than normal distribution.

Fama (1965) analyzed daily log-price changes of thirty stocks in the Dow-Jones 

Industrial Average indices. In every case the empirical distribution was thick-tailed, 

contrary to the assumption of a normal distribution. Estimates of a were consistently less 

than 2. Fama concluded that the stable Paretian hypothesis is better than the Gaussian 

hypothesis in describing the empirical data. J. C. So (1987) analyzed currency futures, 

and found that a  is less than 2. He concluded that most currency futures price changes

8 With normal distribution being a special case of stable Paretian distribution, which 
also has this property. See Fama (1965).
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being studied are adequately explained by stable Paretian distributions.

Random Walk with Sub Gaussian Distribution

From anticipatory price theory of Working (1951) and the discussion in earlier 

part of this section, we can see that the price change in a given period, say one day, will 

depend on the information arrives in the period. If there are more information arrive 

during the day, then the assets will be traded many times, and the price will likely to 

have large change. This prompted Clark (1973) to use a class of distributions subordinate 

to the Gaussian distribution (Clark called it the sub Gaussian distribution) to describe the 

daily price change in futures market.

Clark (1973) studied daily cotton futures prices during 1945-1955, and also noted 

that distribution of daily price changes does not fit into a Gaussian distribution. Clark 

argued that daily price changes are the results of many independent events. The futures 

price evolves at different rates during identical time intervals, depending on the arrival 

rate of market information. Clark concluded that daily price changes are normally 

distributed when measured from transaction to transaction, not measured over fixed time 

intervals. Clark proposed that the daily price changes of a futures contract belongs to a 

class of distributions characterized by trading volumes and subordinate to the normal 

distribution.

To test for normality, Clark estimated the Kurtosis statistic of cotton futures price 

changes. Kurtosis is the fourth moment divided by the variance of the distribution. If a
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distribution is normal, its Kurtosis will be 3. Otherwise its Kurtosis will depart from 39. 

Clark grouped the daily price changes of the cotton futures according to the trading 

volume, and found the Kurtosis of the daily price changes of each group to be within the 

confidence interval of normal parent distribution which is about 3 standard deviations. 

Whereas the Kurtosis of the daily price changes of the whole sample is 100 standard 

deviations. This result indicates that each subgroup of the data is normally distributed, 

but the whole series is not normally distributed. The trading volumes used for grouping 

the data may reflect the number of transactions during the period and the rate at which 

new information arrives in the markets.

3.5 Martingale Model

The random walk model, which requires independence between successive price 

changes, is too restrictive. The weaker model, the martingale model, with the relaxation 

of the independence restriction still keeps the flavor of the random walk model. The 

martingale model was proposed by Samuelson (1965) for futures market price 

movements. But it also can be applied to other financial prices such as stock prices. The 

discussion below follows Samuelson’s work and uses futures prices as the example.

For a spot price in the future, given the information of current and past spot 

prices, $ t =  [Y„ Yt., ,...], we can not know with certainty the future spot price Yt+T. 

Suppose there is at best a probability distribution for any future spot price that depends

9 See Taylor (1983), and Judge et. al. (1988), p.891.
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solely on the number of periods in which we try to forecast spot prices. The probability 

of spot price being Yt+T is given by P(Y,$t,r) with the property that:

(3.5.1)

which means the probability of spot price being Y[+r at time t+ r , given the information 

$ t at time t, is the sum of the joint probability of: (1) all possible spot price being Z,+1 

at time t+1 given at time t; and (2) the spot price being Yt+r at time t+ r  given the 

information {Zt+„$,} at time t+1. The equation (3.5.1) is very similar to that of 

Bachelier’s random walk model with continuous time in equation (3.4.1).

Denote the futures price of the commodity quoted at time t for time t+ r  as y(r,t), 

and the futures price quoted at t+1 for time t+ r  as y (r- l,t+ 1), and so on. If we assume 

the futures price y(r,t) is the expected value of the spot price Yl+T, then:

If the spot price sequence {Yt} follows the laws of equation (3.5.1), and the 

futures price sequence (y(r,t), y ( r - l , t+ l) , ..., y(0,t+r)} follows the axioms of expected 

price as described by equation (3.5.2), then the futures price sequence follows a 

martingale model in the sense of having zero price changes,

(3.5.2)

E[A"y(T,t)] = 0 , (3.5.3)
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A"y(r,t) =  y(r-n,t+n) - y (r,t) , n = 1, 2  r.

The equation (3.5.3) implies the expected price change of any futures contract is zero. 

Thus the expected returns on the futures contract is zero, and the martingale model of 

futures prices defined equation (3.5.3) satisfies the weak-form efficient market 

hypothesis.

The martingale model of futures prices suggests that the current price y(r,t) 

contains all that can be known about future price movement in the sense that the expected 

price change is zero. However, the martingale model does not imply that the sequence 

of futures price conform to random walk and neither does it imply that Ay(r,t) is 

statistically independent of A y(r+l,t-l). Samuelson remarked that it should be a source 

of comfort to economists that wheat prices do not perform a Brownian random walk 

which wanders indefinitely far.

To generalize Samuelson’s discussion of the martingale model, we can look y(r,t) 

as the price of a financial asset at time t. Replace y(r,t) by y(, then we can have:

E(Ayt+1|$,) = 0 ,

where $ t is the information of current and past prices. If we note that Ayt+1 = y,+I - yt, 

then we have:

E(yl+, |^t) =  y , . (3.5.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

55

And this is the expression used by LeRoy (1989) for the martingale model. This 

expression says that, if yt is a martingale, then the best (the unbiased) forecast of y,+1 

based on information set $ t is yt.

If we want to discount the asset prices in the future to the present value, and 

consider the dividend of the asset given in period t+1, then we can rewrite equation 

(3.5.4) as:

(l+p)-I E(y,+1+dt+1|$ t) = yl , (3.5.5)

where p is the discount rate and d,*, is the dividend of the asset in period t+1. So the 

price of the asset itself is not a martingale, but the discounted price of the asset with 

dividend reinvested is a martingale. Some assets do not have dividend, so we can drop 

dt+j from equation (3.5.5).

One important difference between the martingale model and the random walk 

model is that the martingale model rules out any dependence of the conditional 

expectation of price changes, whereas the random walk model also rules out higher 

conditional moments of price changes. Thus if the variances of the price changes are 

correlated, the price changes can satisfy the martingale model, but they will not satisfy 

the random walk model. This types of serial dependence in variance will be discussed 

in Chapter 4.

Another important property of the martingale model is that it assumes agents are 

risk neutral. Because the asset which has large variance in its price changes also has
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large risk, if agents do not care what the higher moments of the price distributions are, 

as risk neutrality implies, then they will do nothing in the presence of serial dependence 

in the higher conditional moments of the price changes, or they will not require risk 

premium for risky assets. Even if there is serial dependence in the conditional variances 

it is irrelevant to the martingale model. Once researchers became aware of this property 

of the martingale model, they immediately realized that the efficient market models are 

leaning towards the martingale model rather than the random walk model. Researchers 

also realize that the tests of market efficiency are in fact the tests of martingale model, 

or the test of the weaker model that rates of return are uncorrelated.

Mean-Revertine Process

In testing and explaining the variability in stock prices, Shiller (1984) suggested 

that there may be a "fad" effect stock markets. A fad can reflect changes in attitude or 

fashion regarding investment in reaction to some widely known events. Summers (1986), 

in studying the market efficiency, noted that the persistent errors in market evaluation 

may be explained by fads in the market. The concept of fad in the market was further 

evolved into the mean-reverting process for the stock returns.

Then Poterba and Summers (1988) suggested in a more explicit way that the stock 

return series is the sum of random walks and a stationary mean-reverting process. They 

treated the logarithm of the stock price as the sum of permanent and transitory 

components. The permanent component follows a random walk and the transitory
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component follows a stationary process. The transitory component may reflect fads - the 

financially induced deviations of prices from fundamental values - or it may be a 

consequence of changes in required returns. Transitory components in stock prices imply 

variation in ex ante returns. If the market value and the fundamental value of the stock 

(derived from a company’s capital assets, predicted earning, etc.) diverge beyond some 

range, the difference will be eliminated by financial forces, and the stock prices will 

revert to their mean. Returns must be negatively serially correlated at some frequencies 

if erroneous market moves are eventually corrected.

LeRoy (1989) further elaborated that when the stock prices comprise a random 

walk component and a slow varying fad variable, then the returns over the short interval 

will be uncorrelated but over the intermediate interval will be negatively correlated. This 

is because over the short intervals the random walk component dominates, but over the 

intermediate interval the fad component dominates. Over the intermediate interval, if the 

return in the previous period is high, than the fad is positive, mean-reverting implies that 

the fad will probably diminish in the current period. So over intermediate intervals the 

returns will be negatively correlated. But over very long period, the fad will diminish, 

and the negative correlation of the returns will also diminish. So as the interval of the 

correlation increases, the correlation of the returns decreases from zero to some negative 

value and then goes back to zero, drawing an U-shaped curve.

Poterba and Summers (1988) analyzed data on equal-weighted and value-weighted 

NYSE returns over the 1926 - 1985 periods, and data from other countries and time 

periods. Their results indicated that stock returns show positive serial correlation over
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short periods and negative serial correlation over longer intervals. Poterba and Summers 

found significant transitory price components. Transitory factors account for three-fourth 

of variance in some cases. Using a variance ratio test, they also found that over the long 

horizons, the variance ratio declines as horizon gets longer, which indicates the existence 

of mean-reverting process component in the market.

Fama and French (1988) found that stock prices show negative autocorrelation 

over long horizons beyond a year, where their study was also based on a variance-ratio 

test. As the horizon of the correlation increases, the graph of autocorrelations is U- 

shaped with the minimum occurring within at 3-5 year range. These are consistent with 

the mean-reverting process. In their study, Fama and French included stock returns of 

different industries and different group of firm sizes from the 1926 - 1985 period.

Lo and Mackinlay (1988) investigated the weekly returns of stocks using variance- 

ratio statistic. They showed that the weekly returns of stocks do not follow a random 

walk. They also showed that the results of variance-ratio statistic are inconsistent with 

the mean-reverting process. They concluded that the weekly returns do not fit the mean 

reverting model. Kim, Nelson and Startz (1988) calculated autocorrelation for the data 

used by Fama and French (1988), they found the evidence of mean-reverting only in the 

data sets that include the 1930s period, for the post-World War II period they found no 

evidence of negative autocorrelation in stock returns.

One point worth mentioning is that, Fama (1992) pointed out that for the work 

of Fama and French (1988), even with 60 years of data, the estimation of the 

autocorrelation of returns over long horizon (3 to 5 years) has small sample size and low
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power, and when the 1926-1940 period is deleted from the sample, the negative 

autocorrelation in 3 to 5 year return disappears. And for the work of Poterba and 

Summers (1988), even with 115 years of data, the variance-ratio test for returns over 2 

to 8 years has small sample size and provides weak statistic evidence against zero 

autocorrelation and the random walk model.

The mean-reverting model suggested that the stock returns over short period 

follows a random walk and over long period follows a mean-reverting process. Lo and 

MacKinlay (1988) rejected the random walk component of the mean-reverting model, and 

Kim, Nelson and Startz (1988) rejected the mean-reverting component of the mean- 

reverting model. In a commentary to Shiller’s (1984) paper, Benjamin M. Friedman also 

pointed out the presence of fads (or the mean-reverting, negative correlation over 

intermediate interval) may imply the predictability of the asset prices. But investors will 

not be able to predict the prices unless they know that the current period’s fad is on the 

way in or out, and what the next period’s fad will be. Because we can not predict the 

future fad, we will not be able to predict future prices either. Therefore the mean- 

reverting model also satisfies the weak-form efficient market hypothesis.

1 7  The Mfrfkqt AnWMtiff

The market anomalies, such as the "January effect" and the "days of the week 

effect", are departures from the models discussed in last few sections. In the following, 

I review the market anomalies found in financial prices and their relation to the efficient
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market hypothesis. The effect of market anomalies on modeling of financial prices will 

also be discussed in this section.

Rozeff and Kinney (1976) found that the average stock returns in January is 3.5 

percent, and in other months is 0.5 percent. This January effect is inconsistent with the 

martingale model. Other subsequent studies also confirmed the January effect.10 Banz 

(1983) found the "small firm effect" that the stocks of small firms have higher returns 

than is consistent with their riskiness. Keim (1983) showed that the small firm effect and 

the January effect may be the same thing: The January effect appears only in samples 

that include small firms and give equal weight to small and large firms, as opposed to 

samples that weight firms by value. In analyzing risk and returns trade-off, Tinic and 

West (1984) found that the risk-retum trade-off occurs entirely in the month of January.

The days-of-the-week effect was first found in returns from close of trading on 

Fridays to the opening of trading on Mondays, thus the "weekend effect".11 On average, 

the returns over the weekend are negative. Gibbsons and Hess (1981) also found the 

weekend effect exists in bond market. Later, the Wednesday effect was also noticed by 

researchers. For example, French and Roll (1986) found the variance from Tuesday to 

Thursday was lower than over other two-day period. They also found that on an hourly 

basis, the variance of price changes is 72 times higher during the trading hours than 

during the weekend non-trading hours, and is 13 times higher than during the overnight

10 For example, the works by Reiganum (1981, 1982), and Roll (1983).

11 See, for example Cross (1973), French (1980), Keim and Stambaugh (1984), 
Harris (1986).
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non-trading hours. These findings on the variance of price changes, however, may be 

caused by the difference in the flow of information during the trading and non trading 

hours.12

Chang and Kim (1988) studied the spot commodity price index and commodity 

futures price index, and found that the returns on Monday is lower than on other days, 

and the variance on Monday is larger than on other days. But they found that after 1982 

the negative returns on commodity futures price index disappeared. Before 1981 the 

returns on Friday is the highest and after 1981 the return on Tuesday is the highest. They 

also found that the variances of the returns are not constant throughout the week.

Johnson, Kracaw and McConell (1991) reported the negative seasonal on Monday 

for GNMA and T-bond futures, and positive seasonal on Tuesday for GNMA, T-bond 

and T-note futures. But they also notice that the negative seasonal on Monday only in the 

data before 1982, the positive seasonal on Tuesday only in the data after 1984, and the 

weekly seasonal occur only during the months prior to a delivery month.

Martell and Trevino (1990) studied the intraday commodity futures and found that 

the behavior of intraday prices for a given contract is not homogenous over time. The 

intraday serial correlations of the futures prices gradually changes during the life of the 

contract from small positive values to negative values. The serial correlation of the prices 

is positive in inactive trading days, but is negative in the more active trading days.

Yang and Brorsen (1993) studied IS futures price series from 1979 to 1988. They 

found the most prominent market anomalies is days-of-the-week effect in variance. The

12 See the discussion in section (2.3), Workings (1953), and Clark (1974).
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variance is larger on Mondays and after holidays. Several agriculture commodities 

showed seasonality in variances. A few commodities showed significant day-of-the-week 

in mean, or maturity effect in variance.

These market anomalies show that there are some patterns in financial prices. The 

market anomalies indicate the departure from the random walk model, the martingale 

model, and the mean-reverting model. Malkiel (1989) argued that the market anomalies 

found in financial prices are generally remarkably small and do not provide unexploited 

profitable opportunities. Therefore the market anomalies do not violate the weak-form 

efficient market hypothesis.

Thus when analyzing financial prices, if we detect serial dependence in the data, 

we first need to determine whether the serial dependence is caused by market anomalies. 

If market anomalies can not explain all the serial dependence, then we need to pursue 

further for the additional source of serial dependence. If market anomalies exist in the 

data and we fail to account them, we may have misspecification problem when fitting 

econometric model to financial prices.

M  Summary

The price changes in financial market are the concemce of economists, 

entrepreneurs, and ordinary consumers. In Chapter 6 of this dissertation we will study 

price movements in futures markets. Futures markets provide price information and 

hedging opportunities. But futures markets also share the same properties of other
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financial markets. They are speculative in nature and they are interrelated to other 

financial markets.

A fundamental hypothesis on the price movements in financial markets is the 

efficient market hypothesis. One version of the efficient market hypothesis is the weak- 

form efficient market hypothesis, which states that the asset prices reflect information 

contained in past prices, so it is impossible to formulate a profitable trading scheme 

based on past prices. Some theoretical and empirical studies have challenged the weak- 

form efficient market hypothesis. The random walk model, the martingale model, and 

the mean-reverting model are three models which satisfy the weak-form efficient market 

hypothesis.

The random walk model is the oldest model used for studying price movement 

in financial markets, it assumes the asset price changes (or log-price changes) are 

independently and identically distributed. Earlier empirical studies supported the random 

walk model. But many recent empirical studies rejected the random walk model. The 

martingale model is a less restrictive model than the random walk model. It just require 

that independence between past prices and the conditional expectation of price changes. 

In the martingale model the dependence between past prices and higher moment of price 

changes is allowed and the higher moments are irrelevant in the martingale model.

Another model in financial economics is the mean-reverting model, which 

assumes the financial prices have a random walk component and a mean-reverting 

process. There were some empirical support the mean-reverting model, but there were 

also some empirical evident against the mean-reverting model. Even if the financial
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prices follow the mean-reverting process, we will not be able to predict the future prices 

because we can not know the "mean" where the prices are reverting to. Thus the mean- 

reverting model satisfies the efficient market hypothesis.

The seasonal and daily market anomalies are discovered recently and they are 

generally attributed to calendar events. The calendar events thought as causing the 

anomalies are: tax reports, the weekend none trading days, etc.. The market anomalies 

indicate patterns in financial price series, but they are not large enough to yield profitable 

opportunities, and they do not contradict the weak-form efficient market hypothesis. 

When we conduct empirical study of price movements in financial markets we have to 

be aware of these market anomalies.

The models presented in this chapter have enhanced our understanding of price 

movements in financial markets. But those models also have their limitations and some 

empirical studies have rejected these models. And the traditional techniques for 

hypothesis testing of these models and the weak-form efficient market hypothesis are 

linear. So if the underlying process of price behavior in financial markets is nonlinear, 

these linear techniques will not be able to reveal the nonlinear process in financial prices. 

The recent research on nonlinear models and techniques is a major step forward for 

understanding price movements in financial markets. These topics will be discussed in 

the next chapter.
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TESTING AND MODELING NONLINEARITY IN TIME SERIES

4J. Introduction

The financial economic models discussed in Chapter 3 have advanced our 

understanding of price dynamics in financial markets. The statistic methods used for 

studying these models were mostly linear. Recently, however, there have been increasing 

empirical evidence that raises questions about the appropriateness of these models and 

the techniques for studying them. Moreover, some new financial economic models were 

developed with nonlinear structure in them. Thus the use nonlinear econometric time- 

series models and techniques in studying price dynamics in financial markets appeared 

to be a potentially fruitful agenda.

Research in physical sciences has discovered new behavioral patterns in nonlinear 

dynamic systems. Among the interesting behavioral patterns, deterministic chaos has 

drawn special attention1. A nonlinear system can produce a deterministic time sequence 

(or path) that has the characteristics of stochastic process. A nonlinear system can also

1 Examples of this application includes turbulence and thermal convection in fluids, 
chemical reacting systems, climate behavior, biological population behavior, and other 
wide range of research in physics (laser, plasmas, solid state physics), See May (1975).
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exhibit the appearance of unpredictability and structural change when in fact there is no 

shift in the model’s structure at all. These findings have inspired researchers to use 

nonlinear time-series models in the study of price dynamics in financial markets.

The research in physical sciences also provides techniques for detecting nonlinear 

deterministic chaos.2 But these methods are not statistical tests and they only deal with 

deterministic system. In financial economics we may encounter nonlinear stochastic time- 

series processes. Recently several empirical studies have indicated the existence of 

nonlinear stochastic process rather than nonlinear deterministic process in financial 

markets. Therefore we need new methods that can deal with nonlinear time-series 

processes as well as deterministic chaos and provide us with test statistics for study of 

financial prices. The new test statistics which will be studied in this dissertation are the 

BDS statistic, the TAR-F statistic, and the Q2 statistic.

The BDS statistic is a new test statistic which can be used to detect nonlinear 

determinist process and nonlinear time series process. It is derived from the correlation 

integral. The null hypothesis of the BDS statistic is that the time series being 

independently and identically distributed (HD). If the time series is not HD, the BDS 

statistic will be able to detect the non-HD. The BDS statistic can also identify nonlinear 

time series when it is applied to linear fitted data of the time series. The BDS statistic 

can be used to test the adequacy of the forecasting model when applied to the forecasting 

errors of the model.

2 Such as the calculation of largest Lyapunov exponent and the calculation of 
dimension of the phase trajectory.
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The other test statistics that can also be used for detecting nonlinearity are the 

TAR-F statistic which is designed for detecting threshold autoregressive nonlinearity, the 

McLeod-Li Q2-statistic which is designed for detecting autoregressive conditional 

heteroskedasticity (ARCH) type nonlinearity, and the Bispectral test which has the ability 

to detect many types of nonlinearity. The first two test statistics are more interesting 

because they can be used for model identification in the model building process.

Two nonlinear econometric time-series models, the threshold autoregressive model 

and the ARCH-type model, are more attractive to financial economics. The threshold 

autoregressive model has nonlinearity in terms of conditional mean, while the ARCH- 

type model has nonlinearity in terms of changing variance of the time series. These two 

nonlinear models have been applied to economics and finance and have brought some 

improvement in the modeling of data.

In this chapter we review concepts of nonlinear deterministic dynamic system and 

the transition to chaos. Then we discuss how are the nonlinear determinist model and 

nonlinear time series model related to economics and finance. The BDS statistic, the 

TAR-F statistic, the Q2-statistic, and the bispectral analyzes are be reviewed and 

discussed. Two nonlinear econometric time-series models, the threshold autoregressive 

model and ARCH-type model, and their estimation methods that will be used in this 

dissertation are also discussed.
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A dynamic system can be described using state variables. For some dynamic 

systems we have specific information on all the state variables, but for many other 

dynamic systems we may not know all the state variables. For example, a macro 

economic system may be described by GNP, investment, money supply, interest rate, 

unemployment rate, etc.. For the problem of price dynamics in commodity futures, the 

variables that describe this problem probably will be the price of the futures, the trading 

volume, the interest rate, the supply and demand of the commodity, the returns on other 

financial assets, and other financial and economic variables.

For a dynamic system, if st is the S dimensional vector of state variable which 

contains all the information describing the system at time t, the space that contains all 

the possible paths of the state vector is called the state space and has dimension of S. 

This state vector has the information relevant to the behavior of the system during time 

t+1. So it follows that there must exist a function (law of motion) such that St+1 = f(St) 

for all t. In general we can not observe the state variable nor the function f, we can only 

observe a variable x, of the system at time t. In our current problem of price dynamics 

in financial markets, the observed variable x, is the log-price change of the asset. Because 

the state vector st fully describes the dynamic system, the observed variable x, must 

depend on the state vector st. Hence there must exist a function g such that x,=g(s,) for

3 For detailed discussion of the topic, see May (1975), Ott (1981), Barnett and Chen
(1989), Baumol and Benhabib (1989), and Savit (1989, 1990).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

69

every t.

The dimension of the state space can be very large, and there can be many 

choices of state vectors Sj and dynamical function f  that can explain the observed variable 

x, deterministically. When study the observed variable and the underlying dynamic 

system, however, we should seek the simplest explanation for the observed data series 

and the lowest dimensional state space that can be used to produce a self-generating 

deterministic explanation of the past, present, and future behaviors of data series x,.

The observed variable xt combined with the state vector s,will produce a system 

vector of dimension S + l. In general each variable of the combined system vector 

evolves continuously in accordance with a differential equation of first order in time:

x = f°(x,s1,...,s?) ,

s' = f(x,s* sf) , i = l  S , (4.2.1)

where the dot over the variable denotes the time derivative. Theoretically, by repeated 

differentiation in time and by substitution, the S + l differential equations can be reduced 

to a single differential equation of order S + l in the observed variable x,. Hence we see 

that the observations on only one variable, x,, are sufficient to permit us to go beyond 

its own one-dimensional space to infer information about the dynamic system f  itself, 

which is defined over the unknown state space.

For a nonlinear dynamic system, the variable x, can evolve in a remarkable 

number of ways. Guckenheimer and Holmes (1983) observed that "simple differential
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equations of dimension three or greater can possess solutions of stunning complexity." 

The variable x, can converge to a constant or a cycle, or evolve to deterministic chaos 

having the properties of almost any kind of stochastic process4. A deterministic system 

that can produce chaotic time sequence (or path) is called deterministic chaotic dynamic 

system. A time sequence is chaotic, or "turbulent,” if the sequence has the following 

properties: (1) sensitive dependence on the initial condition (called the seed); (2) a form 

of stationarity, and; (3) nonperiodicity.

The points in the state space that draw the sequence of state vector {Sj} towards 

them if the initial point of the sequence is sufficiently close to them is called attracting 

points. The region where if the initial point starts and the sequence {s,} will be drawn 

by the attracting points is called the basin of the attractor. The behavior of the sequence 

of state vector {s,} is determined by the geometry of the attractor. The attractor which 

contains one attracting point is called an attractor of period one. If there are two 

attracting points in the system, then the point near them will be simultaneously attracted 

by two separate points. The attractor which has two attracting points is called an attractor 

of period two. The attractor of period one will become an attractor of period two when 

the parameter characterizing the model changes and passes a critical value, and this 

critical value is called bifurcation point.

To illustrate, consider an economic system of Cobweb model in which the 

quantity demanded in the current period is a function of the current price, the quantity 

supplied in the current period is a function of last period’s price, and the supply is equal

4 See Ruelle and Takens (1971), Li and Yorke (1975).
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to the demand, that is: 

qD, = fV .P .) ,

qs, =  W P t- i) . 

qDt =  qs. .

where qDt and qst are respectively the quantity demanded and the quantity supplied in the 

period t, pt is the price in period t, a and 0 are the parameters in demand function and 

the supply function. The shapes of the supply curve and the demand curve, defined by 

the supply function and the demand function, can be varied by the parameter 0 and a  

respectively. If the supply curve and demand curve cross each other, and at the crossing 

point the slope of supply curve is greater than the slope of demand curve, then the 

crossing point is the equilibrium point and the attracting point (see Figure 4.1). If the 

initial price is close to but not at the equilibrium point, then it will move towards to and 

eventually reach the equilibrium point. Suppose as one or both parameters of the demand 

function and supply function change, the supply and demand curve cross more that once, 

there can be more than one attracting point in the model.

For a dynamic system, the most noted way of transition to chaos is through the 

bifurcation of period doubling, which is explained by the following. As a parameter of 

the model changes, the attractor with one attracting point will evolve to an attractor with 

two attracting points. When the parameter of the model changes further, the two 

attracting points of the attractor will separate farther and farther apart. Eventually, each
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attracting point will bifurcate into two attracting points. The number of attracting points 

doubles every time when bifurcation occurs, since at bifurcation each attracting point 

spans its own new two attracting points and every attracting point in the attractor 

bifurcates simultaneously. Hence, bifurcation produces period doubling. As parameter 

changes and passes from one bifurcation point to the next bifurcation point, the distance 

between the two successive bifurcation points gets smaller and smaller, with that distance 

being exactly predictable from a convergence rate constant called Feigenbaum’s 

number5. The attractor also can start from a loop (limit cycle), and then bifurcate to an 

n-periodic, n-torus attractor.

At the limit, after infinite occurrence of bifurcations, the attractor set can have 

infinite number of points. If the attractor set forms a line, or a square, or a cubic, then 

it will have dimension of 1, or 2, or 3 respectively. If the attractor set has a fractional 

(non integer) dimension then it is called fractal6, and we say that the attractor is a 

strange attractor. The existence of a strange attractor is neither necessary nor sufficient 

for the system being chaotic. Nevertheless, in virtually all studies of chaos, a strange 

attractor exists. Hence, we consider the existence of chaotic dynamics as the existence 

of a strange attractor drawing the time path toward it.

The attractor set is a subset of the state space. Typically we have no measured 

value of the state vector s„ we only have a measured value of the observed variable

5 Suppose {a j is the sequence of the parameter where the bifurcation occurs, then 
the Feigenbaum’s number is defined as (a ra uy(a u-a i.2) when i-*».

6 See Mandelbrot (1977).
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Hence, it is important for us to have a means of relating the behaviors of state vector st 

to the behaviors of observed variable Takens (1980) has done so through an 

embedding theorem, which can be understood as follows. Select a state vector from the 

basin of the attractor; produce an n-history (orbit) of x, created by n-1 iterations on (g,f) 

(i.e., Xt = g(S |), and st =  f(sl.1)); then stack the resulting n values of into an n-history. 

If the first observation in the n-history is x,, we can designate an n-history as following:

x(n)t = (x,, xl+j x,+n.,) . (4.2.2)

The space of those n-histories x(n)t for a fixed choice of n is called the phase space, and 

the selected value of n is called the embedding dimension. The set of phase space 

trajectories for all possible initial conditions for the state vector within the basin set is 

called the phase portrait of the system.

The choice of the embedding dimension n is very important for us to unfold and 

reveal the structure of a complex dynamic system. To study the properties of the 

attractor, the embedding dimension must be selected to exceed the dimension of the 

attractor.

Suppose the construction of x(n)t for a fixed embedding dimension is repeated for 

each possible value of st within the basin set. Takens proved that there exists a 

deterministic dynamic system F in the phase space for any fixed embedding dimension 

n such that a one-to-one correspondence exists between the dynamic properties (in 

particular, all conjugate invariant) of s,+1 =f(S() in the state space and the dynamical
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properties of x(n)t+1=F(x(n),) in the phase space. Those invariant properties include the 

Lyapunov exponent as well as dimension and entropy concepts.

Two of popular techniques in physical science to detect deterministic chaos are 

the computation of the attractor’s dimension and calculation of the orbit’s Lyapunov 

exponent. These two techniques also can be used in economics and finance because of 

the relatively easy calculations involved7. But these two techniques require large number 

of observation and are not statistical tests. And these techniques are not intended to deal 

with nonlinear time series process where misleading conclusion could be obtained.8 The 

nonlinear statistical tests discussed in the next few sections are the techniques that can 

fill this gap.

43 Nonlinearitv and Price Dynamics in Financial Markets

For the problem of price dynamics in financial markets, suppose the price 

dynamics Xj are governed by a S-dimensional state vector st and by the underlying 

dynamics f, such that:

s, = f(s,.,) ,

x, = g(s,) . (4.3.1)

7 See, for example, Brock and Sayers (1985), Barnett and Chen (1986), Blanck
(1990), Yang and Brorsen (1991).

8 For example, Liu (1989) showed that the noise in the model can cause over 
estimation of the correlation dimension.
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State vector st consists of variables which we do not have observation. Following the 

discussion of last section, we can construct an n-dimensional vector from the observed 

variable:

x(n)t =  (Xj, xt+i x,+n.i) . (4.3.2)

So there will be a dynamic system F such that:

x(n)t = F(x(n)t.j) . (4.3.3)

And the dynamic properties of F will be the one-to-one image of the dynamic properties

of f. In particular, if f  is nonlinear, then F will also be nonlinear.

For the n-th component of x(n), in equation (4.3.3), we have:

^ t+ n - l  ~  Fn(Xt-l> Xt ,  . . . . ,  X ,. i+n . i )  . (4.3.4)

In equation (4.3.4), if we rewrite t+n-1 as t, Fn as G, and rearrange orders of x/s in

function f, then we have:

xt = G(xt.„ x,.2 xt.n) . (4.3.5)

So the current price change can be expressed as the function of past price changes.
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Equation (4.3.5) also can be thought of as a model with a feed back mechanism in the 

price dynamics when the current price changes are influenced by past price changes. If 

we add an error term (or noise) to the deterministic model in equation (4.3.5), it 

becomes a stochastic model which has more features than the deterministic model. Thus 

the deterministic model is a special case of the stochastic model when the error terms are 

identically zero.

When price changes follow equation (4.3.5), the price changes will not be a 

random walk. Nevertheless, when the equation (4.3.5) is nonlinear, the resulting price 

changes can show deterministic chaos with random walk appearance. Moreover, because 

random walk model have been rejected by recent empirical tests, the nonlinear model 

becomes more appealing for study price dynamics in financial markets.

A popular nonlinear dynamic model is the logistic model9, which is a nonlinear 

process with one period lag (see Figure 4.2). Suppose the price change in the current 

period is influenced by the price change in last period in a way such that

x,+1 = b xt (1 - x j , (4.3.6)

where b is a constant parameter, and the price changes x, vary within the interval (0, 1).

In the logistic model, when the parameter b is less than 1, the price changes 

starting at any initial point will converge to zero. Thus zero is the only attracting point

9 See, for example, the discussion in physics by Ott (1981), Grassberger and 
Procaccia (1983), and in finance by Savit (1989).
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Figure 4.2 
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when b <  1. When 1 <  b <  3, the time series of price changes will be drawn by 2 

non-zero attracting points. As the value of parameter b increase further and further, the 

price changes will subsequently be attracted by 4 attracting points, 8 attracting points, 

and so on. After the value of parameter b exceeded 3.5699, the price changes will be 

attracted by infinite number of attracting points. Thus the price changes will move in a 

deterministic chaotic way when b >  3.5699. To illustrate the deterministic chaos 

generated by logistic model, Figure 4.3 shows the sequence generated by logistic model 

and the log-price changes of S&P 500 index futures.

Another simple nonlinear dynamic model is the tent map (see Figure 4.2). The 

tent map is defmed by:

x,+I = 2 x , , if x, £ 0.5 ,

= 1-2 x , , if xt >  0.5 . (4.3.7)

The variable x, is restricted in the region (0, 1). The map from x, to xt+1 looks like a 

tent, so this nonlinear model is called tent map. The sequence xt generated from this

model is chaotic, and the more detailed discussion of this model can be found in the

literature such as Baumol and Benhabib (1989). Figure 4.3 shows a sequence generated 

by the tent map.

The logistic model and tent model discussed here are just two simple examples 

of nonlinear discrete dynamic models which show features of deterministic chaos and the 

potential to model price dynamics in financial markets. This does not imply that they are
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Figure 4.3

Log-Price Changes of S&P 500 Futures and 
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the models which actually describes price dynamics in financial markets.

Other nonlinear models were also developed in economics and finance. For 

example, Benhabib, Day, and Grandmont (Grandmont, 1985) had considered an 

overlapping generation model. In this model the two generations maximize their utilities 

subject to budget constrains. The resulting dynamic function of real balance of the young 

generation is nonlinear and can lead to deterministic chaotic behavior. Savit (1989) also 

showed that the option prices can have nonlinear deterministic chaotic component, such 

as the tent map in the formulation of option prices.

Several empirical studies were attempted to detect low dimensional nonlinear 

deterministic chaos in finance. Blank (1990) studied the price changes in futures markets, 

and concluded there are evidence of nonlinear deterministic process. Peters (1991) 

studied the returns of S&P 500 index and indicated the existence of deterministic chaotic 

attractor. Hsieh (1991) studied the returns of several stock indices, but rejected the 

existence of nonlinear deterministic model. Yang and Brorsen (1992 and 1993) studied 

the commodity prices and futures prices, and rejected the hypothesis of nonlinear 

deterministic process. The studies of Hsieh (1991) and Yang and Brorsen (1992 and 

1993) suggested the nonlinear stochastic time-series model for modeling price dynamics 

in financial markets.

Some theoretical works in economics and finance also yielded nonlinear stochastic 

models. For example, Aiyagari, Eckstein, and Eichenbaum (1985) studied the prices of 

storable goods, and found that the prices of storable good will switch between two linear 

stochastic processes when the inventory changes from positive to zero or from zero to
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positive. This model of storable good prices is a threshold autoregressive model of Tong 

and Lim (1980). Hsieh (1988) also formulated a nonlinear stochastic rational expectations 

model of exchange rate under central bank interventions. The model of exchange rate is 

also a nonlinear switching model similar to threshold autoregressive model. Lai and 

Pauly (1988) also formulated a model for foreign exchange rates, where the equilibrium 

exchange rates is an ARMA process with conditional heteroskedastic errors. The 

nonlinear econometric models are also useful for explaining behavior of economic and 

finance data. Two of the most useful nonlinear econometric models are discussed in 

detail in Section 4.S and Section 4.6.

4.4 The BDS Statistic

The BDS statistic proposed by Brock, Dechert, and Scheinkman (1987) is based 

on correlation integral. It is developed to avoid the short comings of the Grassberger- 

Procaccia method of detecting deterministic chaos using correlation dimension. Basically 

the BDS statistic is for testing whether a time series satisfies the independently and 

identically distributed assumption. But it can also be used to detect nonlinearity in the 

time series when applied to the residuals of linear filtered model. The BDS statistic is 

particularly useful because it can detect nonlinear serial dependence in the time series 

where the linear technique of autocovariance generally fails.10

10 Sakai and Tokumaru (1980) showed that certain deterministic chaotic time 
sequences such as tent map can have zero autocorrelation. Bunow and Weiss (1979) also 
demonstrated that the very simple deterministic chaotic model of tent map can generate
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For time series {x,}, at embedding dimension of M, its M-histories x(M)i is 

defined by:

x(M), = (x,, xl+1 Xi+M.,) , (4.4.1)

and its correlation integral CM T(L) at embedding dimension of M and correlation length 

L (in the unit of sample standard deviation) is:

(4.4.2)

where T is the sample size, and the indicator function IL(.) is defined by:

IL(x(M)itx(M)j) = 1  if sup norm || x(M)r x(M)j || < L  ,u

IL(x(M)i,x(M)j) = 0 elsewhere (4.4.3)

The BDS statistic of the time series at embedding dimension M, correlation length L, and 

sample size T is:

time paths, autocorrelation functions and spectral power density functions appearing to 
be indistinguishable from those generated by pseudo-random numbers.

11 For an n-dimensional vector y=(y‘,y2......y"), sup norm ||y|| =  max |y‘|,
i= l,2 ,..,n , which is largest absolute value of y’s coordinate.
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wm>T(L) = Tl/2(CM.T(L)-C1.1<L)M)/aM.T(L) , (4.4.4)

where:

(T-M+l)(T-M)a’-M-l)lsiZjZstT
(4.4.6)

+iL(.xm JTX(M)i)WM)iXM)km

Hsieh (1989) provided a intuitive explanation of the BDS statistic as follows. The 

correlation integral CM<T(L) is the estimation of the probability that any two M-histories 

x(M); and x(M)j are within the distance of L from each other, and we have:

CMtT(L) converges to prob{ |  x(M)r x(M)j |  <L} as T -->  oo .

If x’s are independent, then the joint probability is the product of the probabilities of 

individual event, therefore:

If x’s are identically distributed, then prob{ || xi+k-xj+k || <L} will be same for all k. Thus

prob{ || x(M),-x(M)j |  <  L} =  H .o .m -1 prob{ || xi+l£-xj+k |  <  L}

CM>T(L) converges to prob{ ||x l+k-xj+k|| <L} as T - >  oo .
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we have:

I U m,  p rob{  | |x i+k-xj+k|| <L} = [p ro b { flx r Xj|| <L}]M .

Because C1>T(L) converges to prob{ || xr xj || <L}, so CM>T(L) converges to C1>T(L)M as 

T-+00 . Therefore T1/2(CM(L)-C1(L)M)/aM T has the standard normal distribution when { x j  

is independently and identically distributed with oMtT given by equation (4.4.5).

The null hypothesis of the BDS statistic is that the time series is HD. Brock, 

Dechert and Scheinkman (1987) showed that if a time series is HD, then the BDS statistic 

is distributed asymptotically standard normal. For the alternative of non-HD time series, 

the BDS statistic will not be standard normal distributed. When testing a time series, we 

can compute its BDS statistic and use critical values of the standard normal distribution 

to decide the acceptance or rejection of the HD null hypothesis.

The BDS statistic can detect non-HD time series, include linear and nonlinear time 

series. In order to use the BDS statistic for detecting nonlinear time series, we apply the 

BDS statistic to the linear filtered time series. If the original time series is linear, the 

filtered time series will be HD. If the original time series is nonlinear, then the filtered 

time series will not be nD. Therefore, when applied to the linear filtered time series, the 

BDS statistic can detect nonlinear time series12.

The BDS statistic also can be used to test the adequacy of forecasting model. If 

we have a forecasting model, we can apply the BDS statistic to the forecasting errors of

12 See Brock (1987) for the proof of the theorem.
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the model. If there is no remaining forecastable structure, then the forecast errors should 

pass the BDS test. If the forecast errors are rejected as non-IID by the BDS test, then 

there is some forecastable structure in the forecast errors, such as serial dependence or 

changing variance. In this case we need to identify the forecastable structure and 

formulate a new model.

The asymptotic distribution of the BDS statistic is standard normal under the IID 

null hypothesis. Hsieh and LeBaron (1988) showed that the asymptotic distribution of the 

BDS statistic under the alternative hypothesis is a normal distribution with unknown 

mean and unknown variance. Furthermore the finite sample distribution of the BDS 

statistic under both the null and alternative hypothesis can not be derived analytically. 

Therefore in the empirical application of the BDS test we only have the asymptotic 

distribution of the BDS statistic under the null hypothesis for interpreting the test results.

In order to learn the finite sample distribution of the BDS statistic, Brock, 

Dechert and Scheinkman (1987) did a Monte Carlo study of the BDS statistic on a small 

scale with a single sample size, a single fixed parameter value, and few types of time 

series. Hsieh and LeBaron (1988), Brock, Hsieh and LeBaron (1991) expanded the scale 

of Monte Carlo experiments on the BDS statistic with more sample sizes and more types 

of time series. Of the most recent study, Brock, Hsieh and LeBaron (1991) presented 

estimations of finite sample distribution of the BDS statistic for several IID and non-IID 

time series. They found the estimated distribution of the BDS statistic of the IID time 

series studied approximate the asymptotical distribution when the embedding dimension 

M, correlation length L and sample size T are in reasonable ranges, i.e., M <5,
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1.0<L <2.0, and T>500. For those non-IID time series studied, with the parameters 

of the time series (such as AR coefficient) fixed at a relatively large value, Brock, Hsieh, 

and LeBaron (1991) estimated the distribution and rejection frequency of the BDS 

statistic. The results showed that under the alternative hypothesis the distribution of the 

BDS statistic departs from standard normal and has power to reject null hypothesis. But 

still we do not know the finite sample distribution and power of the BDS statistic when 

the parameters of the non-IID time series take other values, especially when the values 

of parameters are small representing the weak serial dependence in the time series. These 

aspects of the BDS statistic will be studied in Chapter S.

Scheinkman and LeBaron (1989) applied the BDS statistic to US GNP data and 

growth rate of industrial production, they found the existence of nonlinearity in the data. 

Hsieh (1989, and 1991) also used the BDS statistic to test five daily currency exchange 

rates from 1974 to 1983 and the returns of S&P 500 indices. The BDS statistic rejected 

IID null hypothesis for all the exchange rates and the returns of S&P 500 indices. Yang 

and Brorsen (1992, 1993) applied the BDS statistic to 9 commodity spot prices and 15 

futures prices from 1979 to 1988. In all cases, the BDS statistic rejected the HD null 

hypothesis.

Threshold Autoregressive Model and TAR-F Test

Threshold autoregressive (TAR) model was first developed by Tong and Lim 

(1980). The TAR model is a piece-wise linear model, the linear process to be followed
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in the current period depends on which threshold region does a lagged value of the time 

series fall into.

Specifically, a time series x, is a self-exiting threshold autoregressive process if 

it follows the model:

x, = a wo +  £ i - t,p a® i*n  + c0), , r ^ i S x ^ C r j , (4.5.1)

where j= l , . . . ,k + l ,  k is the number of threshold, p is the AR order, d is the threshold 

lag, and x^  is the threshold variable. The threshold values of the TAR model are 

-oo =r0< r1< ... < rk< rk+1 = oo; for each j, {e®t} is HD with zero mean and variance a*. 

The TAR model partitions the one-dimensional Euclidean space into k+1 regions and 

follows a linear AR process in each region. The overall model for xt is not linear when 

there are at least two regions with two different linear processes. Tong (1978, 1983), 

Tong and Lim (1980) proposed this nonlinear time series model as an alternative model 

for describing periodic time series. The TAR model has certain features such as limit 

cycle, amplitude dependent frequencies, and jump phenomena, that can not be captured 

by a linear time series model. For instance, Tong and Lim (1980) showed that the TAR 

model is capable of producing asymmetric, periodic behavior exhibited in the annual 

Wolfs sunspot data and the Canadian LYNX data.

The TAR model is generally characterized by the threshold lag d, the number of 

threshold k, the threshold values rj, the AR order p, and the AR coefficients in each 

threshold region. A simple TAR model is the following:
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x, =  a x t., + e , , if Xj., <  0 , 

=  -a x,., +  c , , if x,.]  ̂ 0 .

89

(4.5.2)

In this model, the threshold lag is 1, the number of threshold is 1, the threshold value 

is 0.0, the AR order is 1, and the AR coefficients are a  in first threshold region, -a in 

second threshold region. If the noise term e, in this model is zero, then the model can 

represent a deterministic nonlinear chaotic model, the tent map. This simple TAR model 

also can be used to approximate the nonlinear time series process such as:

^  = - xt.,2/(l +  x,.,2) + e, . (4.5.3)

And theoretically other nonlinear time series models such as x, = fix,.,) +  e, can be 

approximated by a TAR model if we use sufficiently large number of threshold values 

at each turning point of the function f.

For detecting the TAR process, several tests have been developed, notably the test 

of Tong (1983), the portmanteau P-test of Petrucelli and Davies (1986), and the TAR-F 

test of Tsay (1989). The TAR-F test is used in this dissertation because the TAR-F test 

statistic can also be used in the model building procedure of the TAR model. Following 

is a brief discussion of the TAR-F test and the model building procedure of TAR model 

proposed by Tsay (1989).

To simplify the discussion, suppose the time series has a non-trivial threshold r t 

and the threshold lag d. Then we do an arranged regression, which is arranged by
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ascending order of the threshold variable x,^. Suppose we start a recursive regression 

with first m observations in the arranged data. When m is not so large such that all 

threshold variables of the m observations are in the fust threshold region, the estimates 

of the coefficients are consistent if there are sufficiently large numbers of observations 

in the regression. In this case, the predictive residuals are white noise asymptotically and

orthogonal to the regressors {x^ | i = l  p}. When m is too large such that some

threshold variables are in the second threshold region, then the corresponding predictive 

residuals will be biased because the model changed. And the predictive residuals will 

depend on the regressors {x,.; | i= l , . . . ,  p}. Consequently the orthogonality between the 

predictive residuals and the regressors will be destroyed once the recursive regression 

proceeds to the observations whose threshold variable x^  exceeds r t. Here the actual 

value of rt is not required, all that is needed is its existence.

To calculate the TAR-F statistic, we select an AR order p and a threshold lag d. 

The regressor of the regression is {(l,x,.„ .... xt.p) |t= p + l ,  ..., T}. We arrange the 

observation xt and the aggressor (l.x,.,, ..., x,.p) by the ascending order of the threshold 

variable x^. After the arrangement, the n-th observation is xra and its regressor is ( l.x ^  

,, .., x^p). Now the threshold variable is x ^ ,  and x ^ ^ i S x ^ .  Then for the arranged 

regression, we use first b observations to do least square estimation. Then we use the 

remaining observation to do recursive regression. Suppose A^ is the estimate of the 

coefficient based on first m observations, Pm is the associated X’X inverse matrix, q™ is 

the regressor. Then the recursive least squares estimates can computed efficiently by:
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^ m + l “  A m +  K m + lt^ m + l) - q m+jAJ ,

^m +l 1 .0  +  q  m+iPmQm+l »

^m+1 “  PmQm+l̂ ro+1 *

Pm+1 “  (I ” Pm 9m +lQ  m + / D m +i ) P m . (4.5.4)

The standardized predictive residuals of the arranged recursive regression are given by:

®r<m+l) l^ i(m + l) "  9  m + l^ n J ^ ^ m + 1  ( 4 . 5 . 5 )

For selected p and d, the effective number of observation in the arranged regression is 

T-d-h+1, where T is the sample size, h=max{l,p+l-d}. Because we start the recursive 

regression with b observations, the recursive regression has T-d-b-h+1 standardized 

predictive residuals. Now perform the following least square regression:

= wo + ^v-i.p 0vXri-v + e*i » i= b + l, ..., T-d-h+1, (4.5.6)

and compute the associated F statistic, the TAR-F statistic:

F(pjQ = (E * '  ~ (4.5.7)
;£efl(T-d-b-p-h)

Tsay (1989) proved that if x, is a linear stationary AR process of order p, then for large 

T, F(p,d) follows approximately an F distribution with p+1 and T-d-b-p-h degrees of
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freedom. Further more, (p+l)F(p,d) is asymptotically a chi-squared random variable 

with p+1 degrees of freedom.

For a Fu v distribution, its mean and variance are:

mean(Fuv) =  v/(v-2), (4.5.8)

var(Fuv) =  2v2(u+v-2)/[u(v-2)2(v-4)]. (4.5.9)

So in the Monte Carlo study of the TAR-F statistic we can use these results to compare 

the simulated TAR-F statistic.

The null hypothesis of the TAR-F test is that the time series is a linear AR 

process. Under the null hypothesis, the TAR-F statistic will have an F distribution. 

Under the alternative, if the time series does not follow the same linear model when the 

threshold variable moves into different regions, then the TAR-F statistic will not have 

an F distribution. And we can use the critical values of the corresponding F distribution 

for rejecting or accepting of null linear AR hypothesis.

So for the study of finite sample behavior of the TAR-F test has been limited. 

Using Monte Carlo method, Tsay (1989) examined the TAR-F test on some data 

generating processes (DGPs) of TAR model with d = l ,  k = l ,  p = l ,  and found that the 

TAR-F test has power of detecting TAR type nonlinearity. Tsay also found that the TAR- 

F test does not give high rejection frequency for DGPs of linear AR. In another study, 

Tsay (1991) investigated the TAR-F test on several types of nonlinear DGPs and 

concluded that the TAR-F test has good power rejecting them. However, in these studies,
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the number of sample size and number of parameter values of DGP are few. In Chapter 

5, the TAR-F test will be studied with more sample sizes and more parameter values of 

DGP.

Tsay (1989) also provided a procedure for building the TAR model. In order to 

specify the threshold lag d, we should run the test for different threshold lags with a AR 

order p not too small, select the threshold lag which has the largest TAR-F statistic. For 

identifying threshold values of the r ’s, we should run the arranged recursive 

autoregression again with the specified threshold lag, get the scatter-plot of t-ratios of the 

AR coefficients at each recursive stage. If the arranged autoregression passes a threshold 

value by even a short distance, then the pattern of gradual convergence of the t-ratio will 

be destroyed and the t-ratio will have a big change. The places where the t-ratio has big 

changes are the locations of the threshold values. Once the threshold values are 

determined, we should select the AR order in each threshold regime by using Akaiki 

information criteria (AIC). We can also do a fine tuning of threshold values by varying 

threshold values and minimizing overall AIC values.

Although TAR model is useful for analyzing finance data, its application so far 

has been limited. Tsay (1989) studied the sunspot date from 1700 to 1979, the Canadian 

LYNX data, and the hourly attic temperature. The TAR-F test indicated the existence of 

threshold in all three cases. When the TAR model is applied to these three group of data, 

the fitting of the data were improved. Geweke and Terui (1991) used a modified TAR 

model to analyze the GDP of six OECD countries, where the threshold variable is the 

GNP of U.S.. They also found the modified TAR model has substantial improvement in
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the root mean square error of the estimation. Pope and Yadav (1990) used the TAR-F 

test and CUSUM test to study the problem of mispricing in financial futures and 

concluded that the time series of mispricing follow a TAR model.

4*6 GARCH Model and O2 Test

The ARCH-type model of Engle (1982) is an attempt to improve time series 

forecasting. For a first order AR model:

= 7xn  + . (4.6.1)

where et is white noise. The conditional mean of x, is yx*., while the unconditional mean 

is zero. The forecast of the time series is improved by the conditional mean. The 

conditional variance of the model is still a constant. So similarly, if we have a model 

with varying conditional variance, the forecast of the time series also can be improved. 

One of the earlier model along this line is the bilinear model of Granger and Andersen 

(1978). A simple bilinear model is given by:

x, = xt., , (4.6.2)

where et is white noise with variance a2. The conditional variance of x, is a2̂ 2. But the 

unconditional variance of Xt is either zero or infinity, which makes this model
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unattractive. The alternative model which also has a conditional variance is proposed by 

Engle (1982). Engle’s model, the autoregressive conditional heteroskedasticity (ARCH) 

model, is defined as:

-  N(0,h,),

h, = h(xt.„ x,.2........ x,.p, a) , (4.6.3)

where is the information set available at time t, a is a vector of unknown parameters, 

p is order of the ARCH process.

The ARCH model was further extended by Bollerslev (1986) to allow for a more 

flexible lag structure in the variance. A generalized ARCH (GARCH) process of 

Bollerslev is given by:

xt| ^  ~  N(0,hj ,

h, a 0 itq "i" /3jht-j , (4.6.4)

where pSO, q^O, a 0> 0, a ^ O , i= l , . . . ,q , j= l , . . . ,p .  The GARCH process has 

an adaptive learning mechanism since it allows lagged conditional variances to determine 

the current conditional variance.

The GARCH model specified in equation (4.6.4) is denoted by GARCH(q,p). 

When p=0, the GARCH(q.p) reduces to ARCH(q) process. And when p= q=0, x, is just 

simply a white noise. A simple GARCH model is the GARCH(1,1) illustrated by:
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xt = el ht,/2 , e, ~  N(0,1) , 

h, =  a 0 + a  Xu2 + 0 ht.i ,
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(4.6.5)

where ao > 0, a  ^  0, 0 ^ 0 .  The GARCH model illustrated above has the property 

that large (small) changes to be followed by large (small) changes in the time series 

generally seen in financial markets.

One test of ARCH-type nonlinearity is the Lagrange multiplier test proposed by 

Engle (1982). After some mathematical derivations and simplifications, Engle showed 

that the Lagrange multiplier test statistic is asymptotically equivalent to the following 

statistic:

f  = T R 2 , (4.6.6)

where T is the sample length, R2 is the coefficient of determination of the regression of 

x 2 over a constant and its r lagged values. The test statistic f  approximates xr2> the chi- 

square distribution with r degrees of freedom. The null hypothesis of h = constant will 

be accepted or rejected depend on whether t  is within or out side of die acceptance 

region of the chi-square distribution at the given level of significance.

A similar method by McLeod and Li (1983) also can be used to test the ARCH- 

type process. McLeod and Li developed a Q2-statistic, following the suggestion of 

Granger and Andersen (1978) that the autocorrelation function of the square of a time 

series can be useful in identifying nonlinear bilinear time series. McLeod and Li also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

97

suggested the Q2-statistic to be used in identifying other types of nonlinear time series, 

including the time series of ARCH-type model.

For the time series {x,}, its Q2-statistic is given by:

Q2(p)=T(T+2)Ek-1>p r2(k)/(T-k), 

r(k)=Et. 1>T.l£(x2-u2)(xt+k2-u2)/Et. liT(xt2-u2)2 ,

u2=E,_1iTxi2/T . (4.6.7)

Under the null hypothesis of there is no autocorrelation in the squared values of the time 

series, the asymptotic distribution of the Q2-statistic will have a x2 distribution with p 

degrees of freedom. However, the exact finite sample distribution of the Q2 statistic can 

not be obtained analytically, and there has been very few studies of the finite sample 

behavior of the Q2 test. In Chapter 5 we present a study of the Q2 test.

The estimation of ARCH type model requires maximum likelihood method. For 

the GARCH model of equation (4.6.4), x, has a normal distribution with zero mean and 

variance of h,. So the probability density function (pdf) of Xt is:

(27rht) I/2exp(-xt2/(2ht) ) .

And the joint pdf for the sample is:

n t_ 1T(27rhl)'I/2exp(-x,2/(2ht) ) .
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Then the log likelihood function is, apart from some constant:
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M 0) = m  ,

lt(0) = -(1/2) log h, - (1/2) x ,V  . (4.6.7)

where T is the sample length. The Bemdt, Hall, Hall and Hausman (1974) algorithm will 

be used to obtain the maximum likelihood estimates.

Bollerslev (1987) used a GARCH(1,1) model to fit some daily exchange rates and 

monthly stock prices. Before fitting of the model, Bollerslev used the McLeod-Li Q2 test 

to show that the data series has ARCH-type nonlinearity. However, after the fitting of 

the GARCH(l.l) model, the residuals did not show ARCH-type nonlinearity, and 

Bollerslev concluded that the GARCH(1,1) model fits the series quite well.

Hsieh (1989) studied five foreign currencies, and found the existence of 

nonlinearity in the data. Hsieh performed several tests, including McLeod-Li Q2 test, and 

suggested the nonlinearity entered the data through the variance. So Hsieh applied 

GARCH(1,1) model to the data. The nonlinearity test of standardized residuals of the 

model showed that the nonlinearity was reduced greatly. Hsieh concluded GARCH(l.l) 

can account most of nonlinearity of the data. Hsieh (1991) also investigated the returns 

of several stock indices and found the ARCH-type model can improve the fit to the data.

Heimstra (1990) applied McLeod-Li Q2 test on residual of market models of 270 

stocks, and found that nearly 50% of series shows evidence of ARCH type nonlinearity. 

Yang and Brorsen (1993) studied some agriculture futures, metal futures, and financial
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futures. They detected nonlinearity in the data. After fitting a GARCH(l.l) model to the 

data, they found the nonlinearity was removed and the Kurtosis was reduced. They 

concluded that, while not perfect, the GARCH model was preferable for describing 

futures prices.

4.7 Bispectral Test

Concerned with the inability of autocovariance methods to detect nonlinear serial 

dependence in time series data13, Hinich (1982) developed a non-parametric test of 

nonlinearity using the sample bispectrum. To illustrate, let fo} denote a third order 

stationary time series, and let E[xJ = 0 to simplify our discussion. The bispectrum of 

the time series is defined as:

m m
fl,(/i/2) " E E  cJoa(mfn)exp[-i2i:if^m +f2ri)] , (4.7.1)

where f, and f2 are in the domain of the triangular set A = {0 < f,< l/2 , f2< fx, 

2f1+f2< l} , and the third order cumulative function cm(m,n) is given by:

c«x(m,n) = E[xt+mxt+nxJ . (4.7.2)

t

Because the power spectrum of the time series is:

13 See Ashley et. al. (1986).
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s«0> = E[\Ŷ xin)&̂ (-aitfh)\2] <4-7-3)
n*0

We define the standardized bispectrum of the time series as follows: 

W a > (4.7.4)

Hinich and Patterson (1989) showed that the bispectrum of a time series {x,} can 

be consistently estimated using a sample {xq, x„ ..., xT.t} as follows. First we calculate 

the estimate of the bispectrum as:

Fx(j,k)=X(j/T)X(k/T)X*((j +k)/T ), (4.7.5)

where j and k are integers and 

r-i
X(jlT) = £ x texp(-i27c;r/7) . (4.7.6)

»*o

X(0) is set to zero because we assume the sample mean is zero. Fx(j,k) is an estimator

of the bispectrum of {x,} at frequency pair (j,k). The consistent estimator of the

bispectrum is obtained by averaging of Fx(j,k) over adjacent frequency pairs:

  mM-i nM-l

W . )  ■ m-2 E  E  f jm  ■ <4 -7-7>

M  %
Bx(fm,fn) is the average value of Fx(j,k) over a square of M2 points, mM-M<j <mM-l,
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nM -M <k<nM -l , and fm = (2m-l)M/2T . Ashley et. al. (1986) suggested the choice 

of the smooth integer M «  0.7T1/2. Similarly, the consistent estimator of power spectrum 

is given by:

mlf-1
Tjtfj -  M' £  \X(JID\2 (4.7.8)

>■(«-l)*f

The standardized bispectrum, apart from a constant factor, is estimated by:

X -  ------------------------- _ ---------- (4.7.9)

Hinich (1982) showed that the estimators 2|X mn|2 are asymptotically distributed as 

independent non-central chi-squared, x^X ^ ,,) , with non-centrality parameter:

Xmjt
( 4 7 1 0 )

for all m and n such that the averaging lattice square of fm and fn lies entirely within the 

frequency domain of A ={0 <  f, <  1/2, f2 < ft, 2^ +f2 < 1}. The number of such frequency 

pairs is denoted by P.

Ashley et. al. (1986) showed that, under the null hypothesis that the time series 

{xt} is linear, X ,̂, is a constant, independent of m and n. This constant is consistently 

estimated by:

-  2 E „  E „  IX .J7 P  -  2 (4.7.11)

If the null hypothesis is true, then the estimators 2 |X mn|2 will be asymptotically
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distributed as the x^.Xo) distribution, and their sample dispersion will be consistent with 

the dispersion of x2(0,Xo) distribution. If the null hypothesis is false, so that the time 

series {x,} is nonlinear, then will not be a constant. Therefore 2 |X m>n|2 will not be 

asymptotically distributed as x2(2,X0) distribution, and their sample dispersion will exceed 

the dispersion of x2(0,\>)>

One way of measuring the sample dispersion is to compare the 80% quantile of 

the sample distribution with that of the x2(2,X0) distribution (Hinich and Patterson, 1988). 

David (1970) showed that the sample 80% quantile, q g, is asymptotically distributed as 

N(qg,a02), where <r02 is consistently estimated by:

a02 = 0.8(1-0.8)f1(qg)F I . (4.7.12)

where q.g is the population 80% quantile of x2(2,X0), and f(.) is the density function of 

X2. Thus Z=q.g/ob is distributed as N(0,1) under the null hypothesis that the time series 

{x,} is a realization of a linear process.

Ashley et. al. (1986) studied the power of bispectral test using Monte Carlo 

experiments. The DGPs they considered are time series of bilinear, nonlinear MA, 

extended nonlinear MA, threshold AR, nonlinear threshold AR, exponential AR models. 

Their conclusion was that the bispectral test has power to pick up nonlinearities in the 

data, except for the nonlinear threshold AR model and the exponential AR models where 

the power of the test is lower. Because the computation of the Bispetral test is very 

difficult, the Monte Carlo study in this dissertation does not cover the Bispectral test.
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However, we still use it in Chapter 6 for study of futures prices. Hinich and Patterson 

(1985,1989) performed bispectral test on time series of 15 stock returns. They concluded 

that the time series of stock returns are nonlinear, non-Gaussian processes. They also 

rejected the hypothesis that the time series of stock returns are independent.

4.8 Summary

Research in the physical sciences has showed that nonlinear dynamic system can 

generate deterministic chaos that looks random. These feature are similar to what we 

have seen in price dynamics in financial markets. The research in the physical sciences 

further has built foundation from which we can use a single observed variable and learn 

the properties of underlying complex multi-dimensional dynamic system.

These developments in the physical sciences have thus encouraged the use of 

nonlinear models and techniques in economics and finance. One example is the over 

lapping generation model which is a nonlinear deterministic model and can produce 

chaotic behavior. Another example is the option price model where a tent map can be 

used for option price determination. Recent studies also proposed to use nonlinear 

stochastic models in economics and finance.

The techniques in the physical sciences for detecting deterministic chaos are not 

statistical tests. They are not intended to deal with nonlinear time series process neither. 

This has motivated the development several statistical tests designed to deal with 

nonlinear time series process. Three such tests are considered in this dissertation. The
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BDS statistic is designed to detect if the time series is IID, but when applied to linear 

fitted time series it also can be used to detect nonlinear process. The TAR-F test can be 

used to detect threshold autoregressive type nonlinear process. McLeod-Li Q2 statistic 

can be used to detect the nonlinearity in the variance, i.e., the autoregressive conditional 

heteroskedasticity. The finite sample properties of the test statistics are especially 

important for interpreting the empirical test results, and, however, they have not been 

thoroughly studied. In Chapter 5 we evaluate the performance of these three tests using 

Monte Carlo experiments.

The two econometric nonlinear models, the threshold autoregressive model and 

autoregressive conditional heteroskedasticity model, can be useful in study of price 

dynamics in financial markets. The first model has nonlinearity in conditional mean and 

the second model has nonlinearity in conditional variance. In Chapter 6 we apply them 

to the study of price movements in futures markets.
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CHAPTERS 

MONTE CARLO ASSESSMENT

L i  Introduction

The three statistical tests discussed in Chapter 4, the BDS, TAR-F, and Q2 tests, 

are very useful for analyzing economic and finance time series data. However, these tests 

are relatively new and their finite sample behaviors have not been fully investigated. And 

their finite sample behaviors are is important for the application of these tests. In this 

chapter we report results from a Monte Carlo study of the finite sample properties of 

these tests.

Monte Carlo method is a simulation method for solving problems which are 

difficult to solve analytically. For the application in this dissertation, the Monte Carlo 

method is used to study the performance of test statistics. Specifically, the test statistics 

are computed for a large number of simulated time series samples generated from a data 

generating process (DGP) which simulates a specific time series process such as an 

AR(1) process. The mean, the standard deviation, and the rejection frequency of the test 

statistics are calculated. In each Monte carlo experiment, the sample size and the 

parameters of the DGP are fixed. To study the performance of a test statistic we usually

105
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do many Monte Carlo experiments with different sample size, with different parameter 

values of the DGP, and with different types of DGP.

When the number of experiments is large, the results of Monte Carlo experiments 

can be presented comprehensively by the response surface method. For example, the 

response surface of the rejection frequency of a test statistic is obtained by fitting a 

model which shows changes of the rejection frequency in response to changes in sample 

size and to changes in the parameter of the DGP. By using the response surface, we can 

understand the behavior of the test statistic better than from tables full of test results. The 

response surfaces also can generalize the result of Monte Carlo experiment to other 

sample sizes and to other parameter values of the DGP. Thus we can learn the properties 

of the test statistic at new parameter values of the DGP and at new sample sizes without 

re-do the Monte Carlo experiment. By using results from many Monte Carlo 

experiments, the response surfaces can also reduce the effect of impreciseness resulted 

from individual experiments.

Underlying all statistic investigations is the concept of random experiment. The 

random experiment is even more essential for Monte Carlo simulation. An important 

procedure in the Monte Carlo simulation is the generation of random numbers and the 

time series samples which will be used in the simulation. A good random number 

generator is necessary for the success of the Monte Carlo simulation. The commonly 

used method for generating random numbers is the Multiplicative Congruential Generator 

which generates random numbers with uniform distribution. The random numbers with 

other distributions and the simulated time series samples of different DGPs can be
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generated from random numbers with uniform distribution.

In this chapter, we review Monte Carlo experiment and the response surface 

method in Section S.2. In Section S.3 we discuss the data generating process (including 

the random generator) and the Monte Carlo experiment design. The results of Monte 

Carlo studies of the BDS, TAR-F, and Q2 test are presented in Sections 5.4,5.5, and 5.6 

respectively. Section 5.7 compares the results of different test statistics. Finally Section

5.8 summarizes the results of Monte Carlo study.

52 Monte Carlo Experiment and Response Surface Method

Monte Carlo method is a special method of simulation. It gets its name from the 

gambling city in France. During the World War II, when scientists in U.S. were studying 

the fission process of the atomic bomb, they developed a numerical simulation method, 

code named Monte Carlo for the purpose of war-time secrecy. 1 Later on Monte Carlo 

method has been applied to many other fields for solving the problems which are too 

difficult to solve analytically. The application of Monte Carlo method to the study of 

finite sample properties of statistical estimation is relatively new. In this dissertation we 

use Monte Carlo method to study the finite sample properties of three statistical tests.

To illustrate, suppose we have an estimator (or a test statistic), and we want to 

know the properties of this estimator. When applying the estimator to empirical data, we 

need to know the finite sample properties of the estimator for interpreting the results of

1 See Rubinstein (1981) for different application of Monte Carlo method.
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the estimation. For most of the estimators, we know, at most, the asymptotic properties 

of the estimator. And usually the finite sample properties of the estimator are difficult 

to derive analytically, so we rely on Monte Carlo method to study the finite sample 

properties of the estimator.

Specifically, if we have an estimator relating to a time series model, the finite 

sample properties of the estimator at which we are interested are the mean and the 

standard deviation. In a Monte Carlo experiment, we generate many simulated time 

series samples from a data generating process (DGP) which represents the time series 

model. In each experiment, the sample size and parameter value of the DGP are fixed. 

The estimator is applied to these samples. Then the mean and the standard deviation of 

the estimator can be estimated from replicated calculation of the estimator based on these 

samples. For a test statistic, we also estimate the rejection frequency of the test from 

replicated statistics on these samples.

Suppose 17 is a test statistic, for given sample size T and for given DGP parameter 

<i>, 17j is the calculation of 17 from each simulated sample. Then the Monte Carlo estimates 

of the mean, of the standard deviation, and of the rejection frequency of the test statistic 

can be obtained from:

h = E17/N  ,

s = E(i7rh)2/(N-1) ,

P = EI/N , (5.2.1)
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where N is the number of replications, I, =  1 if and only if i?, ^  d, and is zero 

otherwise, and d, is the percentile value of the test statistic.

The quantities of interest such as those in equation (5.2.1) are themselves 

estimates from Monte Carlo experiment, and therefore are subject to experimental error. 

This error can be reduced acceptably small by using a sufficiently large number of 

replications and perhaps by using some variance reduction techniques. The two important 

variance reduction techniques are antithetic variance and control variate. In the antithetic 

variance method, two estimates are obtained for one Monte Carlo experiment, and the 

pooled estimate is used. When covariance of the two estimates is negative, the variance 

of the pooled estimate can be reduced below the ordinary estimate. A control variate is 

an random variable of which the distribution is know and that is correlated to the quantity 

of interest. And the divergence between the sample mean of the control variate in the 

experiment and its known population mean is used to improve the estimate from the 

Monte Carlo experiment.2

For each set of sample size and parameter of DGP, {T,<f>}, equation (5.2.1) gives 

us the results of one Monte Carlo experiment. If we change sample size and the 

parameter of the DGP, the result of the Monte Carlo experiment will also change 

accordingly. And in general, for a Monte Carlo study of a test statistic, we will do many 

Monte Carlo experiments with different sample sizes and with different values of the

2 The design and implementation of the antithetic variance and control variate are 
often difficult, so in this dissertation we will rely on using large number of replications 
for variance reduction of the Monte Carlo estimates. For detailed discussion and simple 
examples, see Davidson and MacKinnon (1993).
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DGP parameter. Then we analyze how changes in sample size and parameter value of 

DGP affect the test statistic. When the number of Monte Carlo experiments is small, we 

can present the results in tables. But when the number of Monte Carlo experiments is 

large, as the case in this dissertation, presenting results in pages of tables can make the 

results difficult to understand. In this case, the method of response surface becomes a 

better way to present the results of Monte Carlo experiments.

The response surface is simply a regression model in which each observation 

correspond to one experiment, the dependent variable is the quantity of interest that was 

estimated in the experiment, and the independent variables are functions of sample size 

and of the parameters of the DGP. From a response surface we can understand the 

behavior of the quantity of interest easier than from pages of tables full of numbers. The 

response surface also reduces the problem of specificity, provides results for a range of 

sample sizes and of parameter values of DGP rather than for just the sample sizes and 

parameter values chosen by experimenter, and eliminates the need to repeat the 

experiment at every new sample size and every new parameter value of the DGP (see 

Hendry, 1984). When the number of experiments is large, the response surface can be 

estimated with great precision even when the number of replications is small, because 

the large number of experiments can compensate for imprecise results from each 

individual experiment.3 A major criticism of the response surface method is that the 

regression model of the response surface can be misspecified and thus can give us false

3 See discussion in Hendry (1984), Davidson and MacKinnon (1993). For example, 
Engel, Hendry, and Trumble (1985) use only 21 replications per experiment in the 
response surface regression.
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representation of the behavior of the quantity of interest.4 However, if we take extra 

caution in specifying the regression model for the response surface, we can reduce the 

problem of misspecification. Furthermore, if we plot the results of individual experiment 

along with the estimated response surface, we can check whether the response surface 

obtained is too far away from the actual results of the Monte Carlo experiments.

To demonstrate, denote the quantity of interest by g. It is a function of the sample 

size and of parameters of DGP, which we denote by the vector <f>. We model this 

function by G(T,<t>,y), where G is a specific functional form that depends on the 

parameter vector 7 , which will be estimated. This model tells us how g responds to 

changes on T and <f>. Denote gj as the Monte Carlo estimate of g from j-th experiment, 

which has a estimated standard error aig). We assume the number of replication per 

experiment is large so we can be confident that gj is very close to being normally 

distributed with mean G(T,<f>,y) and standard deviation a(gj) which can be well estimated 

by ff(gj)- Thus we can write response surface as:

gj = G(T,<t>,y) + Vj , Vj -  N(0,a2(gj)), j = l,...,n , (5.2.2)

where n is the number of experiments and hence the number of observation for the 

response surface regression. To eliminate heteroskedasticity, we do the following 

transformation:

4 See Maasoumi and Phillips (1982), and the reply by Hendry (1982).
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gj/o(gj) = G(T,^,7 )/a(gj) +  Uj, Uj -  N(0,1) , j= l ,. . . ,n .  (5.2.3)

For a test statistic, let hj, Sj, and Pj the estimated mean, standard deviation, and 

rejection of test statistic obtained from j-th experiment based on equation (5.2.1). For the 

mean of the test statistic, we can do the response surface regression by using hj directly, 

and the associated standard error is l/£]=Sj/N1/2. For the standard deviation of the test 

statistic, we need a logarithm formulation to ensure the positive prediction of s from the 

regression of response surface. So log(Sj) is used in the regression and the associated 

standard error is [var(Sj)]1/2/(2N1/2Sj2). If is normally distributed, then var(Sj)=2Sj4. Thus 

the associated standard error will be 1/£2=1/(2N)1/2.5

For the rejection frequency of the test statistic, we need a logit transformation to 

ensure the predicted rejection frequency is between 0  and 1 from the regression of 

response surface, that is L(P)=log[P/(l-P)]. Thus for L(Pj), the associated standard error 

is l/£3=[NPj(l-Pj) ]1/2.6 After the logit transformation, the observations with Pj=0 or 

P j=l are omitted from the regression of response surface.

To specify the regression model for the response surface, we consider the 

following. For most of test statistics, their asymptotic distributions under the null 

hypothesis (ADUNH) are generally known. So when studying the finite sample 

distribution (FSD) of the test statistic, we examine the deviation of FSD from ADUNH.

3 See the discussion in Hendry (1984). Here I consider the standard deviation rather
than the variance of the test statistic, but the derivation of the standard error of the
regression model should be same.

6 See Hendry (1984).
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Under the null hypothesis, the deviations from ADUNH will be large if the sample size 

is small and the deviation will be small if the sample size is large. Under the alternative 

hypothesis, we formulate the DGPs so that the parameters of the DGPs signify the 

departure from the null hypothesis. If the parameters are zero, the DGPs of alternative 

hypothesis reduce to the DGP of the null hypothesis. Thus the deviations of FSD from 

ADUNH will be large if the parameter of the DGP is large and the deviation will be 

small if the parameter of the DGP is small. Furthermore, under the alternative 

hypothesis, the deviation of FSD from ADUNH will be large if the sample size is large 

because the test will reject the null with certainty when the sample size is infinitely large. 

Thus we consider the terms of 1/T, 1/T2, <A, <f>IT, <j>/T2, <t>2, <f>T, ^T2 plus a constant 

term in the general regression model of response surface and then simplify the model by 

restricting some coefficients to equal zero.7

For the BDS statistic, we study its finite sample distribution under both the null 

and alternative hypothesis. The mean of the BDS statistic from ADUNH is zero, and the 

standard deviation of the BDS statistic from ADUNH is 1, the regressions:

hj£i=:(aio+au/T+a12/T2+aij<£+aw£/T+a15<£/T2+a164>2+an^T+ai8i£T2)£i+ehj , 

(log( Sj)) £ 2= (a2o+ a21/T+a22/T2+a23^+a240/T+a25<f>/T2

+a264>2+a27<£T+a2g<£T2)£2+e*j , (5.2.4)

tell us the behaviors of the mean and the standard deviation of the BDS statistic in

7 See Davidson and MacKinnon (1993).
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response to variations of sample size and parameters of DGP. The terms -0 and -log(l) 

are dropped from the left hand side of the above equations because they are zero and 

have not effect in the equation.

For the BDS, TAR-F, and Q2 test, we study the behavior of their rejection 

frequency. For fixed percentile value under the null hypothesis, we analyze the departure 

of the rejection frequency from its value of ADUNH, 6 . Thus we estimate the regression 

model:

(L(Pj)-L(5))£3=(a30+ a31/T + a32/T2+a330 + a 34<£/T+a35<£/T2

+a36</>2+ a37<£T+a384>T2)£3+epj, (5.2.5)

which shows the variation of rejection frequency in respond to variations in sample size 

and to variation in the parameter of the DGP.

In this dissertation, I do not attempt to analyze the size power trade-off of these 

tests. To analyze the size and power trade-off, we need to look the rejection frequency 

at many percentile values for each experiment. Because of the large number of 

experiments involved in this dissertation and of space limitation, we only analyze the 

rejection frequency a one percentile value. Even if we consider only one percentile value, 

we can still obtain useful results for the application of the tests to empirical data.
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In order to carry out a Monte Carlo study, we need to generate simulated samples 

which will be used for the experiments. And random numbers are needed for generating 

simulated samples. To generate random numbers, we first with generate random numbers 

with uniform distribution and then derive random numbers with other distribution from 

the random numbers with uniform distribution.

Like most other Monte Carlo studies, the random numbers used in this 

dissertation will be generated by using of digital computer. However, no digital computer 

is able to generate genuine random numbers. Digital computers can only generate 

sequence of pseudo-random numbers, which are in fact deterministic. A good random 

number generator in computer program can generate pseudo-random numbers that are 

indistinguishable from genuine random numbers for the purpose of Monte Carlo 

experiment. One frequently used random number generator is the Multiplicative 

Congruential Generator:

nt = z,/r, with z,+1 = b z, (mod r) , t=0, 1, 2, ... , (5.3.1)

which produces pseudo-random numbers with uniform distribution in the interval (0 ,1). 

The choices of b and r are important for the random number to be uncorrelated and 

uniform. In general, we chose b = 7s, and r = 231 - 1  .

Marsaglia and Bray (1968) developed a shuffling method to decrease any
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dependency in the pseudo-random number generating process. Before the pseudo-random 

numbers are generated, we first create a table of 128 uniform distributed random 

numbers. Then for each new pseudo-random number, two seed values are used. The 

number generated from the first seed is used to pick a position out of 128 numbers in the 

table. The number in that position is used as the new pseudo-random number, and is 

replaced by the number generated from the second seed. This process will be continued 

until the desired amount of pseudo-random numbers is generated.

In most econometric models, we assume the error term has normal distribution. 

And the error term in the DGP used for most Monte Carlo experiment is also assumed 

to be normally distributed. A popular technique for generating random numbers with 

normal distribution is the Box-Muller bivariate method:

(e1,, e2,) = (-21n(n2t.,) ) ,/2 (cos2im2l, sin2im2t) . (5.3.2)

where n^s are random numbers with uniform distribution, and the random numbers 

generated, e,’s, have standard normal distribution N(0,1). Thus for samples from DGP 

of time series model with serial dependence, we can pick an initial value for the time 

series and do recursive calculation based on the DGP. To reduce the sample’s 

dependence on the initial value of the time series, we generate additional 200  

observations on top of the given sample size and then discard the first 2 0 0  observations.

The design of the Monte Carlo experiments in this dissertation is based on the 

following consideration. First, we select 9 types of DGP which represent 9 types of time
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series model. They are 3 IID time series models, 2 linear time series models, and 4 

nonlinear time series models. The 3 HD time series models fall the under null hypothesis 

of the BDS statistic and under the null hypothesis of the Q2-statistic. The 2 linear time 

series models and the 4 nonlinear time series models fall under the alternative hypothesis 

of the BDS statistic and under the alternative hypothesis of the Q2-statistic. The 3 nD 

time series models and the 2  linear time series models fall the under null hypothesis of 

the TAR-F statistic, with remaining 4 nonlinear time series models fall under the 

alternative of the TAR-F statistic. In this way, we have balanced models under null 

hypothesis and under alternative hypothesis for each test statistic.

Second, for each DGP of time series model, we keep the number of parameters 

to the minimum while preserving the basic feature of the model. Therefore we can avoid 

the difficulty of presenting the results where the effect of many parameters in the DGP 

has to be considered.

Third, we chose the parameter values of the DGP from zero to modest values so 

we will not be overwhelmed by the results which have 100% rejection frequency. After 

all, the observations with 1 0 0% rejection frequency are excluded from and do not 

contribute to the regression of response surface of the rejection frequency.

Fourth, the sample sizes we considered are: T=100, 200, 500, and 1000. This 

is based on the fact that most time series data used in economic and financial research 

has observations in this range. For example, one year’s daily stock returns have about 

250 observations, ten year’s weekly economic indicators has about 520 observations.

Fifth, the numbers of replications are: N=1000 for T=100, N=500 for T=200,
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N=200 for T=500, and N=100 for T=1000. We use more replications for small 

sample size because for a given number of replications the Monte Carlo estimate of the 

quantity of interest is less precise with small sample size. The large number of 

replications will compensate the imprecise brought by small sample size. The smallest 

number of replication is N =100 for T = 1000. With this number of replication, if the size 

of the test under null hypothesis is 5%, the standard deviation of the size of the test will 

be:

[P(l-P)/N] 1/2 =  (0.05*0.95/100)l/2 = 0.022 ,

which is acceptably small. Furthermore, the use of response surface with large number 

of experiments will reduce the effect of impreciseness brought by the individual 

experiment.

The DGPs and their parameter values used for Monte Carlo studies in the 

following sections are summarized in Table 5.1. Following Davidson and MacKinnon 

(1993), if a test statistic is not sensitive to a parameter of a DGP, we use less number 

of values for that parameter in the Monte Carlo experiments. Therefor, for a test statistic 

we may use less number of parameter values than those specified in Table 5.1.
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Table 5.1

DGPs and Their Parameter Values in Monte Carlo Experiments

IID Time Series

a). IID with normal distribution: x, ~  N(0,1);

b). IID with uniform distribution: x, ~  U(0,1);

c). UD of bimodal mixture of normals, x, ~  {0.5 N(0,1) + 0.5 N(a,02)}, with 
a= 0 , 1, 2, 4, 6 , and 0=1, 2, 4;

Linear Time Series

d). Linear AR(1) process: x, = a  xt., +  e , , €,~N(0,1), with a= 0 , 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8;

e). Linear MA(1) process: Xt =  a  et.t +  e , , e ,~ N (0 ,l) , with a= 0 , 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0;

Nonlinear Time Series

f). Nonlinear AR(1) process: x, =  a xt.1(l-xt.1)/(l+x,.,2) +  ct , et~ N (0 ,l) , with 
a= 0 , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95;

g). Nonlinear MA(1) process: x, = a  6t., et.2 +  c , , e ,~ N (0 ,l) , with a= 0 , 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0;

h). Threshold autoregressive process:
Xt = a xt.i +  et if Xt.r <  0  ,

=  -a x,., +  ct if x,.r >  0 , et~ N (0 ,l) , 
with AR coefficient a= 0 , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and threshold lag r = l ,  2, 
3 ,4 ;

i). GARCH(1,1) process:
Xt =  ht€, , tt"N (0 , l)  ,
h2, =  1 +  a x2t.i +  0  h2, . , , 

with a=0.05, 0.1, 0.2, 0.3, 0.4, and 0=0.05, 0.1, 0.2, 0.3, 0.4.
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As discussed in Chapter 4, we can use different values of correlation length and 

different embedding dimensions to calculate the BDS statistic. But then which 

correlation length and which embedding dimension should be used to calculate the BDS 

statistic and to make statistic inference?

The most recent and comprehensive study of finite sample properties of the BDS 

statistic is given by Brock, Hsieh, and LeBaron (1991). Although the authors presented 

pages of tables full of numbers from Monte Carlo experiments, their number of 

experiments is still small. For each type of non-IID time series, only one parameter 

value of the time series is considered. The parameter value considered by them is 

usually large so the rejection frequency is large. Therefore we still have no knowledge 

on the performance of the BDS statistic when the parameter value of the non-IID time 

series is small.

The number of sample sizes and the number of embedding dimensions 

considered by Brock, Hsieh, and LeBaron are also limited. So when studying the 

selection of correlation length and of embedding dimension, results of these authors 

were based on limited cases in which the sample size and embedding dimension take 

limited values. The authors only give a range of values for the selection of the 

embedding dimension and correlation length.

In this section we extend the Monte Carlo study of the finite sample properties 

of the BDS statistic, consider more parameter values of non-IID time series, more
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number of sample sizes, and more number of embedding dimensions. Then we study 

the choice of correlation length and embedding dimension for calculating the BDS 

statistic and for making statistical inference. At the selected correlation length and the 

embedding dimension we report the results of Monte Carlo experiments using response 

surfaces to show the effect of sample size and the effect of parameter of the time series 

on the performance of the BDS statistic.

5.4.1 Selecting Embedding Dimension and Correlation Length

The calculation of the BDS statistic is given by equation (4.4.4) and the related 

equations. The BDS statistic calculated then will depend on, aside from the parameters 

of the time series and sample size, the correlation length and the embedding dimension. 

The correlation length is the measure of how close will the two points be considered 

as "correlated", and it has the same unit as the time series data. To make it into a 

"standardized" measure, the correlation length is generally put into the unit of the 

sample standard deviation. This measure is better than the actual unit of the time series 

or the unit of spread of the time series, because the measure in the unit of the sample 

standard deviation takes account every data in the sample and is related to the 

"closeness" or the dispersion of the sample. So after now on when the correlation length 

is mentioned, it is always in the unit of sample standard deviation.

Many time series data we are concerned in economics and finance are one* 

dimensional data. But the underlying system of these data may be multi-dimensional.
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To put the data into a higher dimensional space can help us to analyze the data and the 

underlying system. If the embedding dimension in the calculation of the BDS statistic 

is too small, we will have difficulty to untangle the complex data. However, if the 

embedding dimension is too large, the non-overlapping pairs of the sample time series 

in the correlation function will be too few to give us meaningful statistic. So the 

embedding dimension can not be too small nor too large. Similar consideration also has 

to be given to the correlation length. If the correlation length is too small, very few 

pairs of the sample time series will be considered as "correlated". If the correlation 

length is too large, most pairs of the sample time series will be considered as 

"correlated". Either way the BDS statistic calculated can have large standard error. So 

the correlation length should not be too small nor too large.

For the selection of correlation length L and the embedding dimension M, the 

theoretical works did not give us any value for L nor M. Brock, Hsieh, and LeBaron 

(1991) did some Monte Carlo investigation and suggested the selection of 0.5<L<1.5 

and 2<M<5 for small sample (less than 2000 points). Their selection is based on: a) the 

"good" approximation of finite sample distribution of the BDS statistic of IID time 

series to the asymptotic distribution which is measured at the selected percentile values; 

and b) the size and the power of the BDS statistic. But for the non-IID time series, with 

the parameter of the time series fixed at large values, the power of the BDS statistic at 

most sample sizes is unanimously 100% regardless the value of L and M. And in this 

case one can not really tell which value of L and/or M gives larger power on rejecting 

the null. Their study also has few number of sample sizes and few number of
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embedding dimensions. Therefore there is need to study the selection of L and M for 

both IID and non-IID time series using more number of sample sizes, more number of 

embedding dimensions, more parameter values of time series.

In this section, we study the selection of correlation length L and the embedding 

dimension M based on the rejection frequency and the standard deviation of the BDS 

statistic. When the BDS statistics are calculated at various correlation lengths L and 

embedding dimensions M, the values of L and M which give lowest rejection frequency 

for IID time series, highest rejection frequency for non-IID time series, and the lowest 

standard deviation for replicated the BDS statistics will be selected as the optimum 

choice of L and M. The correlation lengths we considered are L=0.5, 1.0, l.S, 2.0, and 

2.5. And in a few instances we also considered L=0.2 and 3.0. The embedding 

dimension we considered are M-2, 3, 5, and 7. The sample sizes used in Monte Carlo 

studies are T=100, 200, 500, and 1000. The types of time series and the parameter 

values of the time series are specified in Table 5.1.

After the calculation of the rejection frequency and the standard deviation of the 

BDS statistic, we regress them over L, L2, M, Mz, LM, and other terms relate to the 

sample size and the parameter of the time series. The regression models are:

(log(Sj))̂ 2=(b2iL+b22L2+b23M+b24M2+b25LM+(t),(T,Y))^2+eSj , (5.4.1)

(L(Pj)-L(5))^=(b31L+b32L2+b33M+b34M2+b35LM+<j»p(T,y))^+e»>j , (5.4.2)

where «t>,(T,Y) and <|>p(T,y) represent other terms on right hand side of equations (5.2.4)
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and (S.2 .S) respectively.

After obtaining the estimated coefficients of L, L2, M, M2, and LM, we can use 

them to get the minimum or maximum points of the rejection frequency and the 

minimum points of the standard deviation of the BDS statistic. The estimated 

coefficients are presented in Table 5.2 along with the optimum values of L and M for 

rejection frequency or standard deviation.

From Table 5.2 we can see that for IID time series of normal distribution, the 

small embedding dimension M will give small rejection frequency and small standard 

deviation of the BDS statistic (see Figure 5.1). When M=3, then minimizing point of 

correlation length for rejection frequency is at L=1.52 and for standard deviation is at 

L=1.54.

For IID time series with uniform distribution, to get small rejection frequency 

of the BDS statistic we need to have small M. When M=3, we can see that L=1.81 will 

minimize the rejection frequency. The embedding dimension is preferably small to get 

small standard deviation of the BDS statistic. If we select M=3, then the minimizing 

point of L is 1.79 for standard deviation of the BDS statistic.

For IID time series with bimodal normal distribution, the small embedding 

dimension M will also give small rejection frequency and small standard deviation of 

the BDS statistic. At M=3, the rejection frequency of the BDS statistic will be 

minimized at L=1.62, and the standard deviation of the BDS statistic will be minimized 

at L=1.72.

For time series of linear AR(1) process, the rejection frequency of the BDS will
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be large if the embedding dimension M is small, and it will be maximized when the 

correlation length L-1.63 (see Figure 5.2). The small embedding dimension M will give 

small standard deviation of the BDS statistic. At M=3, the standard deviation of the 

BDS statistic will be minimized when L=1.70.

For time series of linear MA(1) process, the rejection frequency of the BDS 

statistic will be large if the embedding dimension is small, and it will be maximized 

when correlation dimension L=1.46. The small embedding dimension will give small 

standard deviation of the BDS statistic. At M=3, the standard deviation of the BDS 

statistic will be minimized when L=1.47.

For time series of nonlinear AR(1) process, the small values of embedding 

dimension M and/or small values of correlation length L will give large rejection 

frequency of the BDS statistic (see Figure 5.3). The small embedding dimension M will 

give small standard deviation of the BDS statistic. At M=3, the standard deviation of 

the BDS statistic will be minimized when L=1.64.

For time series of nonlinear MA(1) process, the rejection frequency of the BDS 

statistic will be maximized when embedding dimension M=4.68 and correlation length 

L=1.47. The small embedding dimension will give small standard deviation of the BDS 

statistic. At M=3, the standard deviation of the BDS statistic will be minimized when 

correlation length L=1.45.

For time series of TAR process, the small values of embedding dimension M 

and/or small values of correlation length L will give large rejection frequency of the 

BDS statistic. This is very similar to the case for time series of nonlinear AR(1)
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process. The small embedding dimension M will give small standard deviation of the 

BDS statistic. At M=3, the standard deviation of the BDS statistic will be minimized 

when L=1.57.

For time series of GARCH(1,1) process, the rejection frequency of the BDS 

statistic will be maximized when embedding dimension M=2.10 and correlation length 

L=2.12. The small embedding dimension M will give small standard deviation of the 

BDS statistic. At M=3, the standard deviation of the BDS statistic will be minimized 

when correlation length L=1.59.

To summarize, we have seen that for IID time series, the rejection frequency of 

the BDS statistic will be small if the embedding dimension is small, and at M=3, the 

rejection frequency will be minimized when the correlation length is in the range of 1.5 

to 1.8. In general, for non-IID time series, the rejection frequency of the BDS statistic 

will be large if the embedding dimension M is small. For nonlinear MA(1) and 

GARCH(1,1) time series, the regression results indicated that the rejection frequency 

of the BDS statistic will be maximized at M=4.68 and M=2.10, respectively. And for 

most of non-IID time series, the rejection frequency of the BDS statistic will be 

maximized when correlation length takes value from 1.39 to 1.64. These values are 

independent of embedding dimension or are obtained when embedding dimension is set 

at M=3. For nonlinear AR(1) and TAR process, the rejection frequency of the BDS 

statistic will be large if the correlation length is small.

For all the time series studied, the standard deviation of the BDS statistic will 

be small if the embedding dimension M is small. If we set M=3, the standard deviation
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of the BDS statistic will be minimized when correlation length L is in the range of 1.3 

to 1.8. Overall, the dependence of the rejection frequency and of standard deviation of 

the BDS statistic on embedding dimension M is weak compared to their dependence on 

correlation length L.

Therefore if we want to chose a single embedding dimension M and a single 

correlation length L to simplify the calculation of the BDS statistic for time series we 

studied, the choice of M=3 and L=1.5 comes out as a strong candidate. This is 

consistent with the suggestion of selecting 0.5<L<1.5 and 2<M<5 by Brock, Hsieh, and 

LeBaron (1991). The choice of single M=3 and L-1.5 given in this section can help us 

to reduce the work of calculating the BDS statistic at many other embedding 

dimensions and many other correlation lengths. We also get better results with this 

choice than with other choice of embedding dimension and correlation length for most 

of the time series models considered in this section.

5.4.2 Response Surfaces

In this sub-section, the BDS statistics of various time series with different 

parameter values and different sample sizes are calculated at embedding dimension M=3 

and correlation length L=1.5. The Monte Carlo estimate of the means, the standard 

deviations, and the rejection frequencies of the BDS statistic are regressed according 

to the general models specified in equations (5.2.4) and (5.2.5). Following Davidson 

and MacKinnon (1993), we simplify the general models by restricting some coefficients,
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whose t-statistics are low, to zero. The final regression results are presented in Table 

5.3. To help us visualize the response surfaces, the response surfaces are also depicted 

in the Figures 5.4 through 5.12, where the markers are the results of individual 

experiments and the lines are from the regression models of response surfaces.

Under the null hypothesis that the time series is IID, the BDS statistic is 

asymptotically standard normal distributed. In this case the mean of the BDS statistic 

should be zero, the standard deviation of the BDS statistic should be one, and the 

rejection frequency of the BDS statistic at 1.96 should be 2.5%. We use these as the 

bench marks in our investigation of the finite sample properties of the BDS statistic on 

different types of time series. The following are the results of our Monte Carlo 

experiments.

For IID time series with N(0,1) normal distribution, the mean of the BDS 

statistic tend to be negative (see Figure 5.4). But as the sample size increases, the mean 

will move toward zero. The standard deviation of the BDS statistic is larger than one. 

And as the sample size increases, the standard deviation will move toward one. The 

rejection frequency of the BDS statistic is larger than 2.5%, but will move toward 2.5% 

as the sample size increases.

For IID time series with U(0,1) uniform distribution, the mean of the BDS 

statistic is negative for small sample size, but is greater than -0.14 (see Figure 5.5). 

When the sample size is large, the mean will increase to some positive number, about 

0.03. As the sample size increases, the standard deviation of the BDS statistic will 

decrease from larger than one to about one. When the sample size is small, the rejection
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frequency is about 7%. The rejection frequency will decrease to 4% when the sample 

size is large.

For IID time series with bimodal normal distribution, where a  and p are 

respectively the mean and the standard deviation of the second mode of the normal 

distribution, the increase of a  will lower the mean of the BDS statistic (see Figure 5.6). 

The increase of p will lower the mean of the BDS statistic when sample size is small, 

but will raise the mean of the BDS statistic when the sample size is large. In general 

the increase of the sample size will raise the mean of the BDS statistic. But when a  is 

large and P is small, the increase of the sample size will lower the mean of the BDS 

statistic. The increase of a  and the increase of p can raise or lower the standard 

deviation of the BDS statistic, depending their values and the sample size. The increase 

of the sample size will lower the standard deviation of the BDS statistic. The increase 

of a , the increase of P, and the sample size have mixed effect on the rejection 

frequency of the BDS statistic. The increase of a  will raise the rejection frequency of 

the BDS statistic if a is large and P is small. The increase of the sample size will lower 

the rejection frequency of the BDS statistic when p is small. But when p is large and 

the sample size is large, the increase of a  will lower the rejection frequency of the BDS 

statistic. When a  is small and P is large, the increase of the sample size will raise the 

rejection frequency of the BDS statistic. Overall, the mean, the standard deviation, and 

the rejection frequency of the BDS statistic have weak dependence on a  and p, and 

their values do not depart far from the bench mark values compared to their behavior 

in the case of non-IID time series.
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For linear AR(1) process, the mean of the BDS statistic will increase when the 

AR coefficient increases and/or the sample size increases (see Figure 5.7). The standard 

deviation of the BDS statistic will increase when the AR coefficient increases, but with 

no strong dependence on the sample size. The rejection frequency of the BDS statistic 

will increase when AR coefficient increases and/or sample size increases. When the AR 

coefficient a=0.3 and the sample size T increases from 100 to 1000, the rejection 

frequency will increase from 30% to nearly 100%. At the sample size of T=100, when 

the AR coefficient increases from 0.1 to 0.6, the rejection frequency will increase from 

8% to nearly 100%.

For the linear MA(1) process, the nonlinear AR(1) process, and nonlinear MA 

process, the behaviors of the mean, the standard deviation, and the rejection frequency 

of the BDS statistic are similar to the case of linear AR(1) process (see Figures 5.8, 5.9, 

and 5.10). The only differences are when the parameter of the time series or the sample 

size changes, the means, the standard deviation, and the rejection frequency of the BDS 

statistic will not change by the same magnitude compared to their changes in the case 

of the linear AR process.

For threshold autoregressive process, the mean of the BDS statistic will increase 

as the AR coefficient increases, and/or the threshold lag increases, and/or the sample 

size increases (see Figure 5.11). The standard deviation of the BDS statistic will 

increase as the AR coefficient increases, and/or the threshold lag increases, and/or the 

sample size increases. But the dependence of the standard deviation on the threshold 

lag is not strong. The rejection frequency of the BDS statistic will increase when the
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AR coefficient increases, and/or the threshold lag increases, and/or the sample size 

increases.

For time series of GARCH(1,1) process, the mean of the BDS statistic will 

increase if either one or both GARCH(1,1) coefficients increase, and/or the sample size 

increase (see Figure S. 12). The standard deviation of the BDS statistic will increase if 

the first coefficient of GARCH(1,1) increases and/or the sample size increases. The 

second coefficient of GARCH(1,1) has mixed effect on the standard deviation of the 

BDS statistic, its increase can raise or lower the standard deviation of the BDS statistic, 

depending on the values of the first coefficient of GARCH(1,1) and the sample size. 

The rejection frequency of the BDS statistic will increase if either one or both 

GARCH(1,1) coefficients increase and/or the sample size increase.

In summary, the results show that the means, the standard deviation, and the 

rejection frequency of the BDS statistic of IID time series will move close to their 

asymptotic values under null hypothesis as the sample size increases. For the IID time 

series of uniform and bimodal mixture of normal, the distributions of the BDS statistic 

are biased from the standard normal under null hypothesis even when the sample size 

is very large. But their departure from the standard normal is small in comparison to 

that found in case of non-IID time series, we also found that for non-IID time series, 

as the parameter of the time series increases (representing the departure from an IID 

time series), the mean and the standard deviation of the BDS statistic will increase to 

larger values from their respectively values of zero and one under null hypothesis. 

Furthermore, the rejection frequency of the BDS statistic approaches unity as the
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parameter value increases. In general, as the sample size increases, the mean, the 

standard deviation, and the rejection frequency of the BDS statistic will increase. When 

the parameter values of non-IID time series are small, and/or sample size is small, the 

distribution of the BDS statistic of non-IID time series will be close to the asymptotical 

distribution under the null hypothesis.

The response surface models obtained in this section are simplified models of 

the general response surface models given in Section S.2. Before obtaining these 

response surface models, we also used more regressor in the models, but found that 

these models are insensitive to the addition of more aggressor. Further more, the plot 

of the results from individual Monte Carlo experiments is used for specifying the 

functional form of the response surface models. Therefore the response surface models 

obtained do not have major problem of misspecification, and they are robust in terms 

of insensitive to addition of more regressors.
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Table 5.2
Selection of Correlation Length L and Embedding Dimension M

L L> M H> LM L* M* L*(M-3)
IID Time Series with N(0,1) Normal Distribution
L(P) -2.505

(0.109)
n-240

0.958 0.276 
(0.033) (0.014) 

Adjusted R*-0.892
-0.136 
(0.009) 

RSB-0.208
small 1.521

log(s) -1.200
(0.083)

n-240
0.489 0.207 
(0.025) (0.013) 
Adjusted R>-0.794

-0.103(0.008)
RSE-0.162

small 1.543

IID Time Series with U(0,l) Uniform Distribution
L(P) -3.615

(0.145)n-240
1.040 0.113 
(0.045) (0.018) 
Adjusted R*«0.871

-0.049 
(0.013) 

RSB-0.284
small 1.810

log(s) -3.388
(0.085)

n-240
1.062 0.294 
(0.025) (0.013) 
Adjusted R*-0.957

-0.139 
(0.008) 

RSB-0.165
small 1.792

IID Time Series with Bimodal Normal Distribution
L(P) -1.469

(0.108)
n-956

0.565 0.249 
(0.032) (0.014) 
Adjusted R*-0.699

-0.121 
(0.009) 

RSE-0.409
small 1.621

log(s) -0.985
(0.108)

n-960
0.370 0.203 
(0.032) (0.017) 
Adjusted R*-0.502

-0.096 
(0.010) 

RSE-0.420
small 1.723

Time Series of Linear AR(1)
L(P) 0.377

(0.097)
n-848

-0.103 -0.269 
(0.029) (0.073) Adjusted R*-0.811

0.019
(0.008)RSE-0.605

1.634 small

log(s) -1.453
(0.064)

n-1024
0.547 0.282 
(0.017) (0.013) 
Adjusted R’-O.725

-0.137 
(0.007) 

RSE-0.369
small 1.703

Time Series of Linear MA(1)
L(P) 1.135

(0.149)
n-953

-0.386 -0.106 
(0.061) (0.012) 
Adjusted R*-0.745 RSE-0.712

1.469 small

log(a) -1.727
(0.097)

n-1200
0.786 0.336 
(0.035) (0.015) 
Adjusted R*«0.674

-0.197 
(0.011) 

RSE-0.502
small 1.474

Time SerieB of Nonlinear AR(l)
L(P) -0.964

(0.102)
n-1008

0.175
(0.033)
Adjusted R*-0.841

-0.042 
(0.005) 

RSE-0.439
small small

log(s) -1.246
(0.039)

n-1040
0.470 0.192 
(0.012) (0.006) 
Adjusted R«-0.828

-0.098 
(0.004) 

RSE-0.160
small 1.636

Time Series of Nonlinear MA(1)
L(P) 0.750

(0.131)
n-706

-0.255 0.319 
(0.053) (0.072) Adjusted R*-0.784

-0.034
(0.008)

RSE-0.545
1.470 4.684

log(s) -1.562
(0.108)n-800

0.731 0.329 
(0.037) (0.017) 
Adjusted R'«0.657

-0.185 
(0.012) 

RSE-0.464
small 1.447

(continued)
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Table 5.2 (continued)

L L» M M> LM L* M* L*(M-3)
Time Series of Threshold Autoregressive Process
L(P) -0.629(0.076)

n-2099
0.204 0.030 (0.023) (0.011) 

Adjusted R*-0.860
-0.056 (0.007) 

RSE-0.439
email small

log(s) -1.136
(0.027)

n-2240
0.459 0.208 
(0.008) (0.004) 
Adjusted R*-0.824

-0.102 
(0.003) 

RSE-0.158
small 1.570

Time Series of QARCH(l,l)
L(P) 0.19S

(0.051)
n-1633

-0.046 0.058 
(0.017) (0.025) 
Adjusted R>-0.925

-0.014
(0.003)

RSE-0.282
2.119 2.101

log(s) -1.155
(0.033)

n-1920
0.453 0.199 
(0.010) (0.005) 
Adjusted R*-0.765

-0.095 
(0.003) 

RSE-0.184
small 1.589

Note: The numbers in the columns of L, L2, M, M2, and LM are respectively the 
estimated coefficients of L, L2, M, M2, and LM from equations (5.4.1) and 
(5.4.2), other terms in the regression concerning sample size and parameter of the 
time series are omitted from the table;

The numbers in the bracket are the standard errors of the corresponding 
coefficients;

- The numbers in the column of L* and M* are the optimum choices of L and M 
obtained from the estimated coefficients for the calculation of the BDS statistic;

The numbers in the column of L*(M=3) are the optimum choice of L obtained 
from the estimated coefficients for the calculation of the BDS statistic when 
M=3;

RSE denotes residual standard errors;

n denotes the sample size (number of experiments) from which the quoted 
regression was estimated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 5.3
Regression Results of Response Surfaces of The BDS Statistic
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ZID Time Series with Normal Distribution N(0,1)
hf, - - 11.2/T ,

(1.6)
[1.2]

n-12, adjusted R»-0.4282, RSB-0.0419,
log(s) ( ,  m 22.6/T f2 

(1.9)
[1.3]n-12, adjusted R>-0.6171, RSB-0.0511,

(L(P) - 1,(0.025)) f, - (202/T - 11581/TMf,(32) (3377)
[32] [3203]

n-12. adjusted R»-0.7099, RSB-0.155._____________________________________________
IID Time Series with Uniform Distribution U(0,l)
hfj - (0.053 - 45.2/T + 2811/TO ,(0.021) (8.7) (706)

[0.014] [6.8] [584]
n-12, adjusted R»-0.B497, RSE-0.0190,
log(s) - (52.1/T - 1702/TO {, .

(7.1) (741)
[3.6] [485]

n-12, adjusted R*«0.912B, RSE-0.0347,
(L(P) - M0.025)) fj . (0.528 4 69.7/T)f, ,

(0.121) (14.3)
[0.107] [12.6] 

n-12, adjusted R»-0.673S, RSB-0.149.
IID Time Series with Bimodal Mixture of Normal Distribution 0.5 N(0,l) + 0.5 N(a,/3J)
hf, - (-0.0240/3* - 1310/T* 4 2.42/8»/T - 0.00000371«f*T 4 0.OOOO2740*T>{, ,

(0.0063) (162) (0.65) (0.00000156) (0.0000088)
[0.0040] [115] [0.39] [0.00000132] [0.0000061]

n-48, adjusted R*-0.2347, RSE-0.0581,
log(s) - (21.4/T + 0.0149a* + 0.0418/3* - 0.0525or0 + 2.33a/3/T - 3.49/3>/T

(1.6) (0.0013) (0.0088) (0.0079) (0.72) (0.86)
[1.3] [0.0016] [0.0145] [0.0105] [0.86] [1.32]

- 0.0000525OT - 0.00003790‘T + 0.OOOO417a0T)f, ,
(0.000020) (0.000013) (0.0000132)
[0.000015] [0.000015] [0.0000118]

n>48, adjusted R'-0.8396, RSE-0.057,
(L(P) - L(0.025)){s - (-0.452/3 4 245/T 4 0.0232a* - 12454/T1 - 2.39O0/T

(0.100) (42) (0.0029) (3481) (0.85)[0.079] [33] [0.0027] [2736] [0.46]
4 6.66/3*/T 4 0.00069/3T - O.OOOO88a0T) f, ,
(2.01) (0.00011) (0.000020)
[1.39] [0.000081] [0.000011]

n-48, adjusted R*»0.7848, RSE-0.175.

(continued)
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Linear AR(l) Process: x, - a x,., 4 *, , «t N(0,l) ,
h{, - (-2.31a + 28.3a* - I020a*/T + 0.03G8a*T){, ,

(0.25) (1.0) (BB) (0.0013)
[0.21] [1.0] [87] [0.0013]

n-48, adjusted R>-0.9977, RSB-0.136,
log(s) f, - (41.1/T 4 2.00a* - 1844/T* 4 0.000418a/T) {, ,

(4.5) (0.053) (460) (0.000074)
[5.5] [0.039] [531] [0.000085]

n-48, adjusted R*-0.9818, RSB-0.039,
(L(P) - L(0.025))fj - (6.39a 4 93.1/T 4 10.3a* - 493a/T 4 0.0563a»T){, ,

(0.57) (5.9) (0.94) (58) (0.0049)
[0.54] [4.9] [0.81] [50] [0.0043]

n-37, adjusted R»-0.9949. RSB-0.118._______________________________
Linear Mfc(l) Process: x, - a ct.t 4 ct , ct - N(0,1) ,
h*, - (-0.373 4 8.18a - 1.27a* - 289a/T 4 0.0106aT)*, ,

(0.11) (0.93) (0.66) (70) (0.00099)
[0.091] [0.83] [0.54] [65] [0.00104]

n-60, adjusted R*-0.9745, RSB-0.489,
log(s) {, - (0.326a 435.5/T -1595/T* 434.1a/T -33.3a*/T 40.000748OT -0.000683a*T) ( „  

(0.060) (4.8) (504) (8.3) (5.6) (0.000112) (0.000124)
[0.074] [7.9] [778] [7.8] [4.1] [0.000085] [0.000097]

n-60, adjusted R>-0.9470, RSE-0.0327,
(L(P) - L(0.025))fj - (0.422 4 8.50a - 60Sa*/T 4 0.0402a*T)f, ,

(0.091) (0.43) (42) (0.0033)
[0.120] [0.54] [47] [0.0028]

n-44, adjusted R«-0.9799, RSB-0.243._____ _
Nonlinear AR(l) Process: x, ■ a Xt^d-x,.,)/(i4xt.,*) + (t , - N(0,l) ,
hf, - (-0.447a - 11.5/T 4 3.56a* - 109a*/T 4 0.004810*1)*, ,

(0.090) (1.9) (0.17) (14) (0.00018)
[0.079] [1.1] [0.17] [13] [0.00022]

n-52, adjusted R*-0.9965, RSB-0.066,
log(s) f, - (31.7/T 4 0.370a* - 1084/T* 4 0.000125OT)f, ,

(3.8) (0.020) (379) (0.000053)
[5.0] [0.017] [484] (0.000041)

n-52, adjusted R*-0.9418, RSE-0.034,
(L(P) - L(0.025))fj - (0.701a 4 175/T 4 2.42a* - 9513/T* - 93a»/T 4 0.0097a»T)f, ,

(0.204) (24) (0.32) (2367) (29) (0.00053)
[0.159] [22] [0.28] [2173] [27] [0.00046]

n-50, adjusted R»-0.9914, RSE-0.117.
Nonlinear MA(1) Process: x, - a *t., 4 ct , ct - N(0,l) ,
hf, - ( 4.30a - 14.7/T - 187a/T 4 0.00742aT)f, ,

(0.42) (7.2) (42) (0.00059)
[0.56] [5.1] [50] [0.00076]

n>40, adjusted R*-0.98S2, RSB-0.246,
log(s) f, - (0.716a 4 52.5/T - 0.472a* - 3354/T*) f, ,

(0.067) (6.3) (0.074) (604)
[0.059] [8.5] [0.067] [800]

n-40, adjusted R*-0.8666, RSE-0.046,
(L(P) - L(0.025))f, - (11.7a 4 78.8/T - 10.1a* • 616a/T 4 603a*/T 4 0.0235a*T)f, ,

(0.69) (9.0) (1.13) (81) (106) (0.0035)
[0.51] [9.5] [0.93] [54] [90] [0.0017]

n-32, adjusted R»-0.9875, RSB-0.154.______

(continued)
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Threshold Autoregressive Process:
Xt ■ 01 x,., + «t if x,.t < 0 ,

■ -a x,., + e, if x,.r >0 , * N(0.1) .
hf, - (-4.310 + 9.90a* + 1.65ar - 84or/T + 0.0165a*T){, ,

(0.47) (0.91) (0.16) (18) (0.0015)
[0.44] [0.99] [0.18] [22] [0.0023]

n-112, adjusted R>-0.9409, RSB-0.37,
log(s) f, - (1.148a* + 0.00908r* + 1927/T* - O.B74r*/T + 0.000255OT)f, ,

(0.059) (0.0020) (149) (0.28) (0.000088)
[0.046] [0.0019] [91] [0.24] (0.000078)

n«112, adjusted R*■0.8505, RSE-0.065,
(L(P> - L(0.025)){, - (15.1a* + 29.2r/T - 652a*/T + 0.00327arT> {, ,

(0.88) (2.9) (97) (0.00030)
[1.16] [3.1] [131] [0.00027]

n»103. adjusted R«»0.9133, R S B - 0 . 4 1 2 . _______________________________________
GARCH(1,1) Process:

^  « h, tt , €e - N(0,1) ,
h*t - 1 + a x»t., + d h*t.i ,

h(t - (11.6a - 562a/T + 0.0129aT + 0.0275a£T){t ,
(0.33) (33) (0.0006) (0.0016)
[0.29] [29] [0.0005] [0.0017]

n»96, adjusted R*>0.9964, RSE-0.122,
log(s) ( ,  « (54.3/T - 3581/T* + 2.22a* * 1.820/3 + 137a/T - 337o/T> + 0.00069aT){, ,

(3.8) (372) (0.26) (0.14) (19) (51) (0.00011)
[4.4] [403] [0.24] [0.15] [17] [50] [0.00011]

n*96, adjusted R*b0.9566, RSE-0.03B,
(L (P) -L (0.025)) f i - (0.970 -f 13.31a - 8.22a* + 5.4800 - 432a/T * 0.02S5aT)f, ,

(0.049) (0.69) (1.13) (0.48) (43) (0.0012)
[0.040] [0.66] [0.99] [0.49] [41] [0.0012]

n-79, adjusted R*.0.9903, R S E . 0 . 1 1 6 . _______________________________________

Note: h, s, P are respectively the mean, the standard deviation and rejection frequency 
of the BDS statistic;

= N'Vs , £2 = (N/2)vi, £3 = (NP(l-P) ) 14 are the heteroskedasticity transforms 
of the mean, the standard deviation and rejection frequency of BDS statistic;

N is the number of replication for each experiment;

(.), [.] respectively denote conventional and heteroskedasticity-consistent 
coefficient standard errors;

RSE denotes residual standard errors;

n denotes the sample size (number of experiments) from which the quoted 
regression was estimated.
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Figure 5.1

Effect of Correlation Length L and Embedding Dimension M on BDS
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Figure 5.2

Effect of Correlation Length L and Embedding Dimension M on BDS

Time Series of Linear AR(1 ),«<-0.3, T-500
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Figure 5.3

Effect of Correlation Length L and Embedding Dimension M on BDS

Time Series of Nonlinear AR(1),«U0.3, T-500
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Figure 5.4

Response Surfaces of BDS Statistic
HD Time Series of N(0,1)
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Figure 5.5

Response Surfaces of BDS Statistic
IID Time Series of 11(0,1)
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Figure 5.6

Response Surfaces of BDS Statistic
IID Time Series of Bimodal Normal
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Figure 5.7

Response Surfaces of BDS Statistic
Time Series of Linear AR(1) Process
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Figure 5.8

Response Surfaces of BDS Statistic
Time Series of Linear MA(1) Process
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Figure 5.9

Response Surfaces of BDS Statistic 
Tim* Series of Nonlinear AR(1) Process
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Figure 5.10

Response Surfaces of BDS Statistic
Time Series of Nonlinear MA(1) Process
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Figure 5.11

Response Surfaces of BDS Statistic
Time Series of TAR Process
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Figure 5.12

Response Surfaces of BDS Statistic
Time Series of GARCH(1,1) Process
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L 2  Monte Carlo Study of The TAR-F Statistic

150

The TAR-F statistic of Tsay (1989) discussed in Section 4.5 is intended to give 

us a simple test statistic for detecting threshold autoregressive nonlinearity in time series 

and for identifying threshold lag of the threshold autoregressive model. The TAR-F 

statistic can be calculated from equations (4.5.6), (4.5.7), and (4.5.8).

Tsay (1989, 1991) studied the performance of the TAR-F statistic using Monte 

Carlo experiments. Tsay applied TAR-F test to DGPs of time series models such as 

linear AR model, threshold autoregressive (TAR) model, bilinear model, exponential AR 

model, concurrent nonlinear model (involving cross product of error term). Tsay found 

that, for linear time series, the TAR-F statistic has rejection frequency close to the that 

of F-distribution under null hypothesis. The TAR-F statistic has high rejection frequency 

against all nonlinear time series except the time series of exponential AR model. In these 

studies, more than one parameter values for each type of time series were used, but only 

two sample sizes were used in the first study and only one sample size was used in the 

second study. Furthermore, the TAR-F statistic was only calculated at threshold lag of 

one, so we do not know whether the TAR-F statistic can detect time series TAR process 

with threshold lag larger than one, and whether the TAR-F statistic can identify threshold 

lag of the TAR model.

The goal of this section then is two fold: a) to extend the scope of the Monte 

Carlo study of the TAR-F statistic to 9 types of time series process use 4 sample sizes 

and several parameter value of time series; and b) to use threshold lags of d = l ,  2, 3,
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4, and 5 in the TAR-F statistic. Therefore we investigate the performance of the TAR-F 

statistic on the TAR process and other nonlinear time series, and examine whether the 

TAR-F statistic can identify the threshold lag of the TAR model.

As discussed in the section 4.5, the parameters of the TAR-F statistic are the AR 

order p, the threshold lag d, and the sample size T. The other parameters which can be 

derived are b and h. The b is the number of the observation where the recursive 

regression starts, and h=m ax(l,p+l-d). In this section we select p=5, d = l ,  2, 3, 4,

5. Following Tsay (1989), we use b=T/10+p+l=T /10+6. Therefore we have h = 6 -d, 

(T-b-d-p-h)=9T/10-17. At the sample sizes of 100, 200, 500, and 1000, the TAR-F 

statistics will have distributions of F6>73, F6>163, FM33, and F6|g83, respectively. The means 

and the standard deviations of these F-distributions can be calculated from equations 

(4.5.9) and (4.5.10), and they are reported in Table 5.4. At the rejection frequency of 

5%, the percentile values of these F-distributions for the sample sizes of 100, 200, 500, 

and 1000 are respectively 2.225, 2.155, 2.120, and 2.105.

The DGPs of the time series processes and their parameter values used in Monte 

Carlo experiments are specified in Table 5.1. With these time series, the TAR-F statistics 

are calculated at the threshold lags of d = l,  2, 3, 4, and 5. Then the mean, the standard 

deviations, and the rejection frequencies of the replicated TAR-F statistics are obtained. 

For the types of time series which have smaller means and lower rejection frequencies 

of the TAR-F statistic, we only report the selected results in Table 5.4. But for other 

types of time series which have larger means and higher rejection frequencies of the 

TAR-F statistics, we present the response surfaces of the rejection frequencies in Table
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5.5 and Figures 5.13 through 5.16, as well as the results of TAR-F statistic in Table 5.4.

For the IID time series with standard normal N(0,1) distribution, the means, the 

standard deviations, and the rejection frequencies of the TAR-F statistic are close to the 

means, the standard deviations, and the rejection frequencies of the F-distribution under 

the null hypothesis (see Table 5.4). The means are close to 1, the standard deviations are 

close to 0.6, and the rejection frequencies are close to 5 %. The results shown in the table 

are calculated at threshold lag of d = l. The results at the threshold lag of d=2, 3, 4, and 

5 are similar to the results at threshold lag of d = l ,  and thus are not presented in the 

table.

For the IID time series with uniform distribution, the means, the standard 

deviations, and the rejection frequencies of the TAR-F statistic are similar to their 

counter parts of the IID time series with normal distribution (see Table 5.4). The results 

at threshold lag of d=2, 3, 4, and 5 are also similar to the results at threshold lag of 

d = l  shown in the table.

The results of the IID time series with bimodal normal distribution are presented 

in Table 5.4 at threshold lag of d = l.  The results at other threshold lags are also similar 

to those shown in the table and thus not presented in the table. The results at different 

means and standard deviations of the second mode of the normal distribution are similar 

and close to their corresponding values of the F-distribution under the null hypothesis. 

The only exception is at a= 0 , 0=1, and T=1000, where the standard deviation of the 

TAR-F statistic is about twice the standard deviation of the F-distribution under the null 

hypothesis. However, this is the results of the one single replication of the simulation
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which gives large TAR-F statistic. But the mean and the rejection frequency of the TAR- 

F statistic remain close to 1 and 5% respectively.

For the time series of linear AR(1) process, the results of TAR-F statistic at 

threshold lag of d = l and AR coefficient a= 0 .8  are shown in Table 5.4. The results at 

other threshold lags and other values of AR coefficient are similar to the results in the 

table and are not shown here. We can see that the means, the standard deviations, and 

the rejection frequencies of the TAR-F statistic are close to 1, 0.6 and 5% respectively. 

So the distribution of the TAR-F statistic is close to the F-distribution under the null 

hypothesis. For time series of linear MA(1) process, the results of TAR-F statistic are 

similar to those of linear AR(1) process (see Table 5.4).

For the time series of nonlinear AR(1) process, the TAR-F statistic can reject null 

hypothesis of linear process with large frequency (see Table 5.4 and Figure 5.13). At 

threshold lag of d = l ,  the mean, the standard deviation, and the rejection frequency of 

the TAR-F statistic increase when the AR coefficient increases and/or the sample size 

increases. For instance, when the AR coefficient a= 0 .8  and the sample size T=1000, 

the rejection frequency of the TAR-F statistic is nearly 90%. However, at threshold lag 

of d=2, 3 ,4 , and 5, the TAR-F statistic has means close to 1, standard deviations close 

to 0.6, and rejection frequencies close to 5%. Thus the TAR-F statistic can rejected the 

null hypothesis of linear time series, and furthermore it can identify the nonlinearity in 

the form of lag one. This is what we wanted because the time series being tested are 

nonlinear, and the nonlinearity is in the form of lag one.

For the time series of nonlinear MA(1) process, the TAR-F statistic also can
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reject the null hypothesis of linear process with large frequency (see Table 5.4 and 

Figure 5.14). At threshold lag of d = l and 2, the mean, the standard deviation, and the 

rejection frequency of the TAR-F statistic will increase as the MA coefficient increases 

and/or the sample size increases. When the MA coefficient a= 0 .8 , the TAR-F statistic 

can reject the null hypothesis 100% at the sample sizes of T=500 and T=1000. At 

threshold lag of d=3 and larger, the mean, the standard deviation, and the rejection 

frequency of the TAR-F statistic fall back to the values close to 1, 0.6, and 5% 

respectively. This phenomena can be explained by the nature of the nonlinear MA(1) 

process that the nonlinearity involves the first lag and the second lag of the time series, 

not the third lag or other lags beyond the third lag.

For the time series of threshold autoregressive process, the TAR-F statistic can 

reject the null hypothesis of linear process with large frequency as we expected (see 

Table 5.4 and Figure 5.15). The TAR-F statistic also can be used for identifying the 

threshold lag. For instance, when the threshold lag of the time series r= 3  and the 

threshold AR coefficient of the time series a=0.6, the mean of the TAR-F statistic will 

be very large at threshold lag of d = l  and 3. The large value of the mean of the TAR-F 

statistic at threshold lag of d = 1 may be due to the threshold autoregressive process being 

in the form of first lag. And the large value of the mean of the TAR-F statistic at 

threshold lag d=3 is due to the threshold lag of the time series being at r=3. Although 

the mean of the TAR-F statistic at threshold lag of d=2, 4, 5 is also larger than the null 

hypothesis values of 1, it is much smaller than the mean at threshold lag of d = l  and 3. 

In this prospect, the TAR-F statistic also can identify the threshold lag of the threshold
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autoregressive process.

For the time series of threshold autoregressive process with threshold lag of r=3, 

we can see that the mean, the standard deviation, and the rejection frequency of the 

TAR-F statistic at threshold lag of d=3 will increase when the threshold AR coefficient 

increases and/or the sample size increases. For the time series of threshold autoregressive 

process with other threshold lags, the results of the TAR-F statistic are similar to that of 

the time series with threshold lag of r=3. For example, for time series of threshold 

autoregressive process with threshold lag of r=2 , the TAR-F statistic has large mean at 

threshold lag of d = l and 2 and has relatively smaller mean at threshold lag of d=3, 4, 

and 5. The mean, the standard deviation, and the rejection frequency of the TAR-F 

statistic at threshold lag of d=2 will also increase as the threshold AR coefficient 

increases and/or the sample size increases.

For the time series of GARCH(1,1) process, the TAR-F statistic can reject the 

null hypothesis of linear process (see Table 5.4 and Figure 5.16). The mean, the standard 

deviation, and the rejection frequency of the TAR-F statistic will increase if the first 

GARCH(1,1) coefficient a increases and/or the second GARCH(1,1) coefficient /3 

increases and/or the sample size T increases. However, the dependence of the mean, the 

standard deviation, and the rejection frequency of the TAR-F statistic on the second 

coefficient 0 is not as strong as the dependence on the first coefficient a . We also found 

that the TAR-F statistic has large mean, large standard deviation, and large rejection 

frequency at threshold lag of d=2, 3, 4, and 5 as well as at threshold lag of d = l 

compared to the mean, the standard deviation, and rejection frequency of F-distribution
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under the null hypothesis. But as the threshold lag increases, the mean, the standard 

deviation, and the rejection frequency of the TAR-F statistic will all decrease.

In summary, we extended Monte Carlo study of the TAR-F statistic to nine types 

of time series, using AR order of p=5, and using threshold lag of d = l ,  2, 3, 4, and 5 

instead of just d = l  in the TAR-F statistic. The results show that the means, the standard 

deviations, and the rejection frequencies of the TAR-F statistic for IID time series, for 

time series of linear AR(1) process, and for time series of linear MA(1) process studied 

are close to the mean, the standard deviation, and the rejection frequency of the F- 

distribution under the null hypothesis of linear process. For the time series of nonlinear 

AR(1) process, the time series of nonlinear MA(1) process, the time series of threshold 

autoregressive process, and the time series of GARCH(1,1) process the TAR-F statistic 

gives us large mean and large rejection frequency at certain threshold lags. The results 

also shows that the TAR-F statistic can be used for identifying the threshold lag of the 

threshold autoregressive model. For these nonlinear time series, the mean, the standard 

deviation, and the rejection frequency of the TAR-F statistic will increase as the 

parameters of the time series increase and/or the sample size increases.
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Table 5.4
Results of Monte Carlo Experiments for TAR-F Statistic
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T Mean Mean* STD STD* P P*

I I D  Time S e r i e s  w i t h  

100  1 .0 0 6

Norm al

1 .0 2 3

D i s t r i b u t i o n
d - 1

0 .5 9 4  0 .6 1 7 0 .0 4 6 0 .0 5 0
200 0 .9B 3 1 .0 1 1 0 .5 8 2 0 .5 9 7 0 .0 4 4 0 .0 5 0
500 0 .9 8 0 1 .0 0 4 0 .5 9 9 0 .5 8 5 0 .0 4 5 0 .0 5 0

1000 1 .0 2 2 1 .0 0 2 0 .6 4 1 0 .5 6 1 0 .0 6 0 0 .0 5 0

I I D  Time S e r i e s  w i t h  

100 1 .0 2 2

U n ifo rm  D i s t r i b u t i o n  
d - 1

1 .0 2 3  0 .6 1 5  0 .6 1 7 0 .0 4 2 0 .0 5 0
200 0 .9 9 6 1 .0 1 1 0 .5 4 3 0 .5 9 7 0 .0 2 4 0 .0 5 0
500 0 .9 9 7 1 .0 0 4 0 .5 8 3 0 .5 8 5 0 .0 4 5 0 .0 5 0

1000 0 .9 6 2 1 .0 0 2 0 .5 3 1 0 .5 8 1 0 .0 5 0 0 .0 5 0

I I D  Time S e r i e s  w i t h B im o d a l D i s t r i b u t i o n
d - 1

OtmO,  0=1
100 1 .0 0 2 1 .0 2 3 0 .6 2 3 0 .6 1 7 0 .0 4 2 0 .0 5 0
200 0 .9 9 7 1 .0 1 1 0 .6 3 5 0 .5 9 7 0 .0 5 8 0 .0 5 0
500 1 .0 1 9 1 .0 0 4 0 .5 6 2 0 .5 8 5 0 .0 4 0 0 .0 5 0

1000 1 .1 2 8 1 .0 0 2 1 .1 7 0 0 .5 8 1 0 .0 6 0 0 .0 5 0
OtmO, 0 - 4

1 0 0 1 .0 3 2 1 .0 2 3 0 .6 8 8 0 .6 1 7 0 .0 6 7 0 .0 5 0
200 0 .9 8 9 1 .0 1 1 0 .6 0 8 0 .5 9 7 0 .0 5 0 0 .0 5 0
500 1 .0 3 1 1 .0 0 4 0 .6 0 1 0 .5 8 5 0 .0 7 0 0 .0 5 0

1000 0 .9 3 4 1 .0 0 2 0 .7 0 9 0 .5 8 1 0 .0 6 0 0 .0 5 0
C t m 6 ,  0 m l

1 0 0 0 .9 8 8 1 .0 2 3 0 .5 5 0 0 .6 1 7 0 .0 3 7 0 .0 5 0
200 0 .9 9 0 1 .0 1 1 0 .5 4 8 0 .5 9 7 0 .0 3 4 0 .0 5 0
500 0 .9 5 7 1 .0 0 4 0 .5 7 3 0 .5 8 5 0 .0 4 5 0 .0 5 0

1000 0 .9 6 8 1 .0 0 2 0 .4 9 2 0 .5 8 1 0 .0 1 0 0 .0 5 0
a - a ,  0 - 4

100 0 .9 7 7 1 .0 2 3 0 .6 1 9 0 .6 1 7 0 .0 4 7 0 .0 5 0
200 0 .9 6 3 1 .0 1 1 0 .5 9 0 0 .5 9 7 0 .0 3 8 0 .0 5 0
500 1 .0 3 5 1 .0 0 4 0 .5 8 0 0 .5 8 5 0 .0 4 5 0 .0 5 0

1000 1 .0 4 1 1 .0 0 2 0 .5 4 5 0 .5 8 1 0 .0 4 0 0 .0 5 0

Tim e S e r i e s  

100

o f  L i n e a r  A R (l)  
d - 1

0 .9 4 8  1 .0 2 3

P r o c e s s  
a t - 0 . 0 

0 .5 9 0 0 .6 1 7 0 .0 4 1 0 .0 5 0
200 0 .9 6 3 1 .0 1 1 0 .5 9 4 0 .5 9 7 0 .0 3 2 0 .0 5 0
500 0 .9 9 5 1 .0 0 4 0 .5 7 1 0 .5 8 5 0 .0 4 0 0 .0 5 0

1000 1 .0 9 4 1 .0 0 2 0 .6 6 2 0 .5 8 1 0 .1 0 0 0 .0 5 0

Time S e r i e s  

100

o f  L i n e a r  MA(1) 
d - 1

0 .9 9 0  1 .0 2 3

P r o c e s s
a - 0 . 8

0 .6 2 8 0 .6 1 7 0 .0 5 0 0 .0 5 0
200 0 .9 5 9 1 .0 1 1 0 .5 8 0 0 .5 9 7 0 .0 3 8 0 .0 5 0
500 0 .9 9 6 1 .0 0 4 0 .6 1 1 0 .5 8 5 0 .0 5 5 0 .0 5 0

1000 0 .9 7 9 1 .0 0 2 0 .6 0 2 0 .5 8 1 0 .0 4 0 0 .0 5 0

(continued)
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T Mean Mean* STD STD* P P*

Time S e r i e s  o f  N o n l i n e a r  AR(1) P r o c e s s
a - 0 . 8

d - 1
100 1 .3 5 8 1 .0 2 3 0 .7 9 6 0 .6 1 7 0 .1 3 1 0 .0 5 0
200 1 .6 1 8 1 .0 1 1 0 .8 7 6 0 .5 9 7 0 .2 5 2 0 .0 5 0
500 2 .3 5 0 1 .0 0 4 1 .2 0 2 0 .5 8 5 0 .4 9 0 0 .0 5 0

1000 3 .7 1 6 1 .0 0 2 1 .5 4 0 0 .5 8 1 0 .8 6 0 0 .0 5 0
d - 2

100 0 .9 9 6 1 .0 2 3 0 .5 9 1 0 .6 1 7 0 .0 4 1 0 .0 5 0
200 1 .0 0 8 1 .0 1 1 0 .6 2 5 0 .5 9 7 0 .0 5 8 0 .0 5 0
500 1 .0 4 7 1 .0 0 4 0 .6 4 0 0 .5 8 5 0 .0 5 0 0 .0 5 0

1000 0 .9 6 6 1 .0 0 2 0 .6 0 3 0 .5 8 1 0 .0 6 0 0 .0 5 0

Time S e r i e s  o f  N o n l i n e a r  MA(l) P r o c e s s
a - 0 . 8

d - 1
100 2 .7 6 6 1 .0 2 3 1 .5 6 4 0 .6 1 7 0 .5 7 0 0 .0 5 0
200 4 .3 7 8 1 .0 1 1 2 .0 3 8 0 .5 9 7 0 .8 6 4 0 .0 5 0
500 9 .3 0 5 1 .0 0 4 2 .8 9 8 0 .5 8 5 1 . 0 0 0 0 .0 5 0

1000 1 6 .9 7 4 1 .0 0 2 4 .4 9 4 0 .5 8 1 1 . 0 0 0 0 .0 5 0
d - 2

100 2 .9 1 4 1 .0 2 3 1 .6 2 3 0 .6 1 7 0 .6 1 9 0 .0 5 0
200 4 .7 7 7 1 .0 1 1 2 .1 2 1 0 .5 9 7 0 .9 2 0 0 .0 5 0
500 1 0 .9 4 2 1 .0 0 4 3 .4 6 4 0 .5 8 5 1 . 0 0 0 0 .0 5 0

1000 2 0 .6 3 8 1 .0 0 2 5 .2 1 5 0 .5 8 1 1 . 0 0 0 0 .0 5 0
d - 3

100 1 .1 1 9 1 .0 2 3 0 .7 4 7 0 .6 1 7 0 .0 8 1 0 .0 5 0
200 1 .1 6 8 1 .0 1 1 0 .7 4 2 0 .5 9 7 0 .0 8 6 0 .0 5 0
500 1 .1 2 8 1 .0 0 4 0 .6 7 1 0 .5 8 5 0 .0 6 0 0 .0 5 0

1000 1 .2 4 3 1 .0 0 2 0 .7 3 3 0 .5 8 1 0 .1 4 0 0 .0 5 0

Time S e r i e s  o f  GARCH(1,1) P r o c e s s
d - 1

a - 0 . 3 ,  0 = 0 .0 5
100 1 .5 0 2 1 .0 2 3 0 .9 8 9 0 .6 1 7 0 .1 7 3 0 .0 5 0
200 1 .6 9 7 1 .0 1 1 1 .0 8 1 0 .5 9 7 0 .2 6 6 0 .0 5 0
500 1 .7 7 1 1 .0 0 4 1 .0 2 6 0 .5 8 5 0 .3 0 5 0 .0 5 0

1000 2 .0 6 0 1 .0 0 2 1 .3 5 1 0 .5 8 1 0 .3 7 0 0 .0 5 0
a - 0 . 0 5 ,  0 - 0 . 3

100 1 .0 4 2 1 .0 2 3 0 .6 2 3 0 .6 1 7 0 .0 4 6 0 .0 5 0
200 1 .0 8 8 1 .0 1 1 0 .6 4 8 0 .5 9 7 0 .0 6 2 0 .0 5 0
500 1 .1 3 2 1 .0 0 4 0 .6 6 0 0 .5 8 5 0 .0 9 0 0 .0 5 0

1000 1 .1 4 6 1 .0 0 2 0 .6 8 6 0 .5 8 1 0 .0 9 0 0 .0 5 0
a - 0 . 3 ,  0 - 0 . 3

100 1 .6 3 7 1 .0 2 3 1 .0 9 5 0 .6 1 7 0 .2 3 3 0 .0 5 0
200 1 .7 9 8 1 .0 1 1 1 .1 9 6 0 .5 9 7 0 .2 9 0 0 .0 5 0
500 1 .9 3 8 1 .0 0 4 1 .1 8 4 0 .5 8 5 0 .3 7 5 0 .0 5 0

1000 2 .3 0 0 1 .0 0 2 1 .7 6 8 0 .5 8 1 0 .3 5 0 0 .0 5 0

(continued)
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T Mean Mean* STD STD* P P*

Tim e S e r i e s  o f  T h r e s h o l d  AR P r o c e s s
r - 3 ,  a - 0 . 6

d - 1
100 4 .6 2 3 1 .0 2 3 2 .1 0 1 0 .6 1 7 0 .9 0 2 0 .0 5 0
200 8 .5 6 4 1 .0 1 1 2 .9 4 1 0 .5 9 7 1 . 0 0 0 0 .0 5 0
500 2 1 .3 4 7 1 .0 0 4 4 .7 9 4 0 .5 8 5 1 . 0 0 0 0 .0 5 0

1000 4 2 .6 2 3 1 .0 0 2 7 .3 8 7 0 .5 8 1 1 . 0 0 0 0 .0 5 0
d - 2
100 1 .2 2 0 1 .0 2 3 0 .7 6 6 0 .6 1 7 0 .0 8 9 0 .0 5 0
200 1 .3 3 1 1 .0 1 1 0 .7 8 5 0 .5 9 7 0 .1 4 0 0 .0 5 0
500 1 .3 8 1 1 .0 0 4 0 .7 9 5 0 .5 8 5 0 .1 6 5 0 .0 5 0

1000 1 .5 3 2 1 .0 0 2 0 .8 5 0 0 .5 8 1 0 .2 0 0 0 .0 5 0
d - 3
100 4 .4 2 3 1 .0 2 3 2 .0 7 4 0 .6 1 7 0 .8 8 7 0 .0 5 0
200 8 .3 2 2 1 .0 1 1 3 .0 2 2 0 .5 9 7 0 .9 9 8 0 .0 5 0
500 2 0 .2 6 0 1 .0 0 4 4 .7 2 9 0 .5 8 5 1 . 0 0 0 0 .0 5 0

1000 4 0 .7 6 7 1 .0 0 2 6 .6 6 3 0 .5 8 1 1 . 0 0 0 0 .0 5 0
d - 4
100 1 .2 9 2 1 .0 2 3 0 .8 2 6 0 .6 1 7 0 .1 2 3 0 .0 5 0
200 1 .5 1 5 1 .0 1 1 0 .9 9 1 0 .5 9 7 0 .2 0 0 0 .0 5 0
500 2 .2 7 3 1 .0 0 4 1 .3 6 2 0 .5 8 5 0 .4 3 0 0 .0 5 0

1000 3 .2 5 3 1 .0 0 2 1 .4 4 3 0 .5 8 1 0 .7 7 0 0 .0 5 0
d - 5
100 1 .3 1 0 1 .0 2 3 0 .8 4 0 0 .6 1 7 0 .1 2 6 0 .0 5 0
200 1 .5 4 9 1 .0 1 1 0 .9 8 8 0 .5 9 7 0 .2 2 8 0 .0 5 0
500 2 .2 9 7 1 .0 0 4 1 .3 3 2 0 .5 8 5 0 .4 5 5 0 .0 5 0

1000 3 .2 1 7 1 .0 0 2 1 .4 7 6 0 .5 8 1 0 .7 4 0 0 .0 5 0

Note: T is the sample size of the TAR-F statistic;

Mean, STD, P are respectively the mean, the standard deviation, and the rejection 
frequency of the TAR-F statistic;

Mean*, STD*, P* are respectively the mean, the standard deviation, and the 
rejection frequency of the F-distribution under the null hypothesis;

d is the threshold lag of the Tsay F-statistic;

a, /S, and r are the parameters of the time series.
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Table 5.5
Regression Results of The Response Surface 

The Rejection Frequency of The TAR-F Statistic

Tine Series of Nonlinear AR(l) Processd-1
(L(P) - L(0 05) >{, - (1.99 a • 20.4/T - 96 a/T + 0.00833 aT - 0.00511 a * T ) ,

(0.21) (7.3) (23) (0.00054) (0.00065)
(0.15) [5.6] [18] [0.00065] [0.00083]n-52, Adjusted R‘-0.9736, RSB-0.185

Time Series of Nonlinear MA(1) Process
cUl
(i*(p> • L(0 05)){, - (19.97 a - 55.0 a» - 1145 a/T + 3607 a1/T + 0.135 a*T) {, ,

(0.74) (5.2) (82) (346) (0.018)
[0.62] [3.7] [67] [237] [0.013]

n-38. Adjusted R»-0.9839, RSB-0.170
d-2(L(P) - L(0.05))£, . (15.8 a - 35.3/T - 15.4 a» 791 a/T + 924 a>/T + 0.0189 a T ) ,

(1.6) (12.0) (1.1) (145) (128) (0.0035)
[1.7] [10.4] [1.3] [159] [142] [0.0038]

n-39, Adjusted R*-0.9769, RSB-0.211
Time Series of Threshold Autoregressive Process
r-1,
(L(P)

d-1
- L(0 . 05)){, - (9.9 a - 17.6 Of* - 608 a/T f 1274 a«/T + 0.0683 a*T){, ,

(1.3) (2-6) (156) (278) (0.0085)
[1.1] [1.8] [137] [234] [0.0048]

n-23, Adjusted R>-0.9826, RSE-0.173
r-2, d-2
(LIP) - no .05)) ( ,  - (10.6 a - 25.0 a* - 787 a/T + 1977 a»/T + 0.136 a » T ) ,

(1.1) (3.4) (124) (291) (0.012)
[1.0] [2.7] [114] [216] [0.012]

n-21, Adjusted R*-0.9948, RSB-0 109
r-3, (L(P)

d-3
- L(0 0 5 ) ) - (6.89 a - 28.4/T - 305 a/T + 0.0101 aT 4 0.0666 a*T) f, ,

(1.15) (12.4) (80) (0.0024) (0.0093)
[0.90] [15.0] [63] [0.0020] [0.0088]

n-21, Adjusted R*-0.9913, RSB-0 144
Time Series of GARCH(l.l) Process
*d-l
(LIP) - L (0.05)){, - (9.29 a - 16.6/T - 4.94 a* - 264 a/T + 324 a/3/T + 0.00500 a/3T) f, ,

(0.35) (5.8) (0.88) (28) (54) (0.00100)
[0.28] [6.2] [0.82] [28] [40] [0.00097]

n-96, Adjusted R>-0.9734, RSE-0 123
d-2
<L(P) - L (0.05)) £, - (3.48 a - 33.7/T 4 10.89 a/3 - 566 a/S/T + 0.00382 a*T){, ,

(0.18) (4.9) (0.80) (102) (0.00087)
[0.15] [4.5] [0.76] [114] [0.00061]

n-96, Adjusted R'-0.9559, RSB-0 157

Note: L(P)=log(P(l-P)), where P is the rejection frequency of the TAR-F statistic;
$3 = (NP(1-P))M is the heteroskedasticity transforms of the rejection frequency 
of the TAR-F statistic, where N is the number of replication for each experiment; 
(.), [.] respectively denote conventional and heteroskedasticity-consistent 
coefficient standard errors;
RSE denotes residual standard errors;
n denotes the sample size (number of experiments) from which the quoted 
regression was estimated; 
d is the threshold lag of the Tsay F-statistic; 
a, 0 , and r are the parameters of the time series.
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Figure 5.13

Rejection Frequency of Tsay’s F-test 
Time Series of Nonlinear AR(1) Process
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Figure 5.14

Rejection Frequency of Tsay’s F-test 
Time Series of Nonlinear MA(1) Process
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Rejection Frequency of Tsay’s  F-test
Time Series of Threshold AR Process
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Figure 5.16

Rejection Frequency of Tsay’s F-test 
Time Series of GARCH(1,1) Process
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The Q2 statistic studied here is the portmanteau test statistic proposed by McLeod 

and Li (1983), which was discussed in Section 4.6. The Q2 statistic is intended to be used 

for identifying the nonlinear time series, such as the bilinear time series and ARCH type 

nonlinear time series, where the Ljung-Box autocorrelation method fails. But McLeod 

and Li (1983) only did small sample simulation of the Q2 statistic for the time series of 

linear AR(1) process. In this section we extend the Monte Carlo study of the Q2 statistic 

to several types of time series at four sample sizes. We also examine whether the 

selection of the lag of the Q2 statistic has any effect on the rejection frequency.

The lags of the Q2 statistic used in our study are p=5 and p=10. So under the 

null hypothesis of the time series has no serial dependence in its squared value, the Q2 

statistic will have distributions of x2(5) and x200) at the lag of p=5 and p = 1 0  

respectively. The means of the x2 distributions then will be 5 and 10, the standard 

deviations of the x2 distributions will be 3.16 and 4.47 for x2(5) and x2(10) respectively. 

At the rejection frequency of 5%, the percentile of these x2 distributions will be 11.07 

and 18.31 for x2(5) and x2(10) respectively. So the Q2 statistic of the simulated time 

series will be compared to these values under the null hypothesis.

The types of time series processes and the parameters of the time series studied 

in this section are specified in Table 5.1. The Q2 statistics are calculated for simulated 

samples of these time series at the lag of p=5 and 10. Then the mean, the standard 

deviation, and the rejection frequency of the replicated Q2 statistics are obtained.
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Although the simulations are performed at the lag of p=5 and p=10, we found the 

results of the rejection frequency of the Q2 statistic at lag of p = 1 0  are very similar to 

the results at lag of p=5, so we only report the results at lag of p=5 of the Q2 statistic 

here. For the IID time series which have smaller means and lower rejection frequencies 

of the Q2 statistic, we report the selected results in Table 5.6. But for other types of time 

series which have larger means and higher rejection frequencies of the Q2 statistics, we 

also present the response surfaces of the rejection frequencies in Table 5.7 and Figures 

5.17 through 5.22, as well as the results in Table 5.6.

For the IID time series with normal distribution N(0,1), the mean, the standard 

deviation, and the rejection frequency of the Q2 statistic are close to the mean, the 

standard deviation, and the rejection frequency of the x2 distribution under the null 

hypothesis, which are 5, 3.16, and 5% respectively (see Table 5.6). With the four 

sample sizes considered, we found the increase of the sample size has small effect on the 

Q2 statistic. The results of the Q2 statistic for the IID time series with uniform 

distribution U(0,1) are very similar to the results for the HD time series with normal 

distribution (see Table 6 .6 ).

For the IID time series with bimodal normal distribution, although the results are 

obtained at different values of mean and different values of standard deviation of the 

second mode of the normal distribution, the results are all similar (see Table 5.6). The 

results at different sample sizes are also similar. The mean, the standard deviation, and 

the rejection frequency of the Q2 statistic are close to 5, 3.16, and 5% respectively, 

which are consistent with the null hypothesis.
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For the time series of linear AR(1) process, the Q2 statistic can reject the null 

hypothesis with large frequency (see Tables 5.6, 5.7 and Figure 5.17). The mean, the 

standard deviation, and the rejection frequency of the Q2 statistic are larger than the 

values of 5, 3.16, and 5% under the null hypothesis. The mean, the standard deviation, 

and the rejection frequency of the Q2 statistic will increase when the AR coefficient 

increases and/or the sample size increases.

For the time series of linear MA(1) process, the time series of nonlinear AR(1) 

process, and the time series of nonlinear MA(1) process, the properties of the Q2 statistic 

have similar behavior as for the time series of the linear AR(1) process (see Tables 5.6, 

5.7, Figures 5.18, 5.19, 5.20). The only difference is that the magnitudes of the mean, 

of the standard deviation, and of the rejection frequency of the Q2 statistic are different 

for each type of time series. For these time series, the Q2 statistics can reject the null 

hypothesis with large frequency. The mean, the standard deviation, and the rejection 

frequency of the Q2 statistic will increase when the coefficient of the time series increases 

and/or the sample size increases.

For the time series of threshold autoregressive process, the Q2 statistic can reject 

the null hypothesis with large frequency (see Tables 5.6, 5.7, and Figure 5.21). The 

results are nearly same at both threshold lag of r = l  and r=3 of the threshold model. 

And these results are similar to the results for time series of linear AR(1) process. That 

is, the mean, the standard deviation, and the rejection frequency of the Q2 statistic will 

increase when the coefficient of the time series increases and/or the sample size 

increases.
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For the time series of GARCH(l.l) process, the Q2 statistic has the ability to 

reject the null hypothesis with large frequency (see Tables 5.6, 5.7, and Figure 5.22). 

The mean, the standard deviation, and the rejection frequency of the Q2 statistic will 

increase when the first coefficient of the GARCH(1,1) process increases and/or the 

second coefficient of the GARCH(1,1) process increases and/or the sample size 

increases. The influence of the first coefficient of the GARCH(1,1) process is stronger 

than the influence of the second coefficient of the GARCH(1,1) process on the mean, the 

standard deviation, and the rejection frequency of the Q2 statistic.

In summary, the Q2 statistic has nearly same rejection frequency at the lag of 

p=5 and p = 10 for the time series studied. We conclude that as long as the lag of the Q2 

statistic is larger than the lag involved in the time series process, the choice of the lag 

of the Q2 statistic will only have small effect on the rejection frequency. The mean, the 

standard deviation, and the rejection frequency of the Q2 statistic for the IID time series 

are close to their values of the x2 distribution under the null hypothesis. For the time 

series with serial dependence, the Q2 statistic can reject the null hypothesis with large 

frequency. The mean, the standard deviation, and the rejection frequency of the Q2 

statistic will increase when the coefficients of the time series increase and/or the sample 

size increases.
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Table 5.6
Results of Monte Carlo Experiments for Q2 Statistic

T Mean Mean* STD STD* P P*

I I D  Time S e r i e s  w i t h  N orm al D i s t r i b u t i o n
100 4 .7 5 0 5 .0 0 0 3 .1 2 0 3 .1 6 2 0 .0 4 0 0 .0 5 0
200 4 .7 9 0 5 .0 0 0 3 .0 8 0 3 .1 6 2 0 .0 3 4 0 .0 5 0
500 4 .6 4 0 5 .0 0 0 2 .8 4 0 3 .1 6 2 0 .0 3 0 0 .0 5 0

1000 5 .0 7 0 5 .0 0 0 3 .2 4 0 3 .1 6 2 0 .0 6 0 0 .0 5 0

I I D  Time S e r i e s  w i t h  U n i fo rm  D i s t r i b u t i o n
100 4 .9 9 0 5 .0 0 0 3 .2 1 0 3 .1 6 2 0 .0 4 0 0 .0 5 0
200 5 .4 0 0 5 .0 0 0 3 .4 5 0 3 .1 6 2 0 .0 7 4 0 .0 5 0
500 5 .3 8 0 5 .0 0 0 3 .6 5 0 3 .1 6 2 0 .0 8 0 0 .0 5 0

1000 5 .1 4 0 5 .0 0 0 3 .3 6 0 3 .1 6 2 0 .0 5 0 0 .0 5 0

I I D  Time S e r i e s  w i t h  B im oda l D i s t r i b u t i o n
a - 0 ,  b = l

100 4 .5 9 0 5 .0 0 0 3 .0 3 0 3 .1 6 2 0 .0 3 2 0 .0 5 0
200 4 .8 0 0 5 .0 0 0 3 .0 2 0 3 .1 6 2 0 .0 4 4 0 .0 5 0
500 4 .6 1 0 5 .0 0 0 2 .7 7 0 3 .1 6 2 0 .0 3 5 0 .0 5 0

1000 4 .9 9 0 5 .0 0 0 4 .2 2 0 3 .1 6 2 0 .0 6 0 0 .0 5 0
a - 0 ,  b - 4

100 4 .3 3 0 5 .0 0 0 3 .3 6 0 3 .1 6 2 0 .0 4 9 0 .0 5 0
200 4 .6 0 0 5 .0 0 0 3 .0 4 0 3 .1 6 2 0 .0 4 6 0 .0 5 0
500 4 .9 0 0 5 .0 0 0 3 .8 4 0 3 .1 6 2 0 .0 7 0 0 .0 5 0

1000 4 .9 8 0 5 .0 0 0 3 .0 3 0 3 .1 6 2 0 .0 3 0 0 .0 5 0
a - 6 , b - 1

100 5 .1 2 0 5 .0 0 0 3 .3 3 0 3 .1 6 2 0 .0 5 3 0 .0 5 0
200 4 .8 9 0 5 .0 0 0 2 .9 7 0 3 .1 6 2 0 .0 5 0 0 .0 5 0
500 5 .3 0 0 5 .0 0 0 3 .4 1 0 3 .1 6 2 0 .0 6 5 0 .0 5 0

1000 4 .6 7 0 5 .0 0 0 2 .6 0 0 3 .1 6 2 0 .0 1 0 0 .0 5 0
a - 6 , b«4

100 4 . 7 9 0 5 .0 0 0 3 .0 3 0 3 .1 6 2 0 .0 3 5 0 .0 5 0
200 4 .7 6 0 5 .0 0 0 3 .2 5 0 3 .1 6 2 0 .0 5 0 0 .0 5 0
500 4 .9 9 0 5 .0 0 0 3 .1 7 0 3 .1 6 2 0 .0 4 0 0 .0 5 0

1000 5 .4 7 0 5 .0 0 0 3 .4 3 0 3 .1 6 2 0 .0 7 0 0 .0 5 0

Tim e S e r i e s o f  L i n e a r  AR(1) P r o c e s s
a - 0 . 6

100 1 7 .1 9 0 5 .0 0 0 1 3 .1 1 0 3 .1 6 2 0 .6 1 4 0 .0 5 0
200 3 2 .7 3 0 5 .0 0 0 2 1 .4 3 0 3 .1 6 2 0 .9 0 2 0 .0 5 0
500 7 6 .1 1 0 5 .0 0 0 3 5 .1 1 0 3 .1 6 2 1 .0 0 0 0 .0 5 0

1000 1 4 8 .8 7 0 5 .0 0 0 5 3 .8 3 0 3 .1 6 2 1 .0 0 0 0 .0 5 0

Tim e S e r i e s o f  L i n e a r  MA(1) P r o c e s s
a - 0 . 6

100 8 .0 1 0 5 .0 0 0 5 .5 9 0 3 .1 6 2 0 .2 1 0 0 .0 5 0
200 1 2 .0 2 0 5 .0 0 0 7 .4 2 0 3 .1 6 2 0 .4 6 4 0 .0 5 0
500 2 3 .2 6 0 5 .0 0 0 1 1 .0 7 0 3 .1 6 2 0 .9 0 5 0 .0 5 0

1000 4 3 .3 7 0 5 .0 0 0 2 0 .0 1 0 3 .1 6 2 1 .0 0 0 0 .0 5 0

(continued)
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T Mean Mean* STD STD* P P*

Time S e r i e s  o f  N o n l i n e a r  AR(1) P r o c e s s
a - 0 . 8

100 6 .5 1 0 5 .0 0 0 5 .2 8 0 3 .1 6 2 0 .1 2 8 0 .0 5 0
200 8 .0 9 0 5 .0 0 0 6 .0 8 0 3 .1 6 2 0 .2 3 6 0 .0 5 0
500 1 3 .3 2 0 5 .0 0 0 7 .1 4 0 3 .1 6 2 0 .5 7 0 0 .0 5 0

1000 1 9 .8 9 0 5 .0 0 0 1 0 .8 7 0 3 .1 6 2 0 .7 7 0 0 .0 5 0

Tim e S e r i e s  o f  N o n l i n e a r  MA(1) P r o c e s s
a - 0 . 6

100 1 1 .0 9 0 5 .0 0 0 8 .6 9 0 3 .1 6 2 0 .3 7 7 0 .0 5 0
200 1 7 .8 2 0 5 .0 0 0 1 2 .8 5 0 3 .1 6 2 0 .6 2 8 0 .0 5 0
500 3 9 .5 6 0 5 .0 0 0 2 1 .4 1 0 3 .1 6 2 0 .9 6 5 0 .0 5 0

1000 7 6 .1 8 0 5 .0 0 0 3 0 .8 9 0 3 .1 6 2 1 .0 0 0 0 .0 5 0

Tim e S e r i e s  o f  T h r e s h o l d  A u t o r e g r e s s i v e  P r o c e s s
r - 1 ,  a - 0 .6

100 1 7 .5 8 0 5 .0 0 0 1 3 .9 9 0 3 .1 6 2 0 .6 3 5 0 .0 5 0
200 3 2 .8 7 0 5 .0 0 0 1 9 .7 5 0 3 .1 6 2 0 .9 3 6 0 .0 5 0
500 7 1 .0 7 0 5 .0 0 0 2 8 .8 9 0 3 .1 6 2 1 .0 0 0 0 .0 5 0

1000 1 5 6 .1 3 0 5 .0 0 0 5 2 .2 5 0 3 .1 6 2 1 .0 0 0 0 .0 5 0
r - 3 ,  a - 0 .6

100 1 7 .4 0 0 5 .0 0 0 1 2 .7 0 0 3 .1 6 2 0 .6 2 1 0 .0 5 0
200 3 1 .6 7 0 5 .0 0 0 2 0 .3 4 0 3 .1 6 2 0 .8 9 6 0 .0 5 0
500 7 9 .5 2 0 5 .0 0 0 3 2 .7 1 0 3 .1 6 2 1 .0 0 0 0 .0 5 0

1000 1 5 1 .3 0 0 5 .0 0 0 4 8 .1 5 0 3 .1 6 2 1 .0 0 0 0 .0 5 0

Tim e S e r i e s  o f  Q A R C H (l,l)  P r o c e s s
a - 0 . 3 , b - 0 . 0 5

100 1 1 .1 5 0 5 .0 0 0 1 0 .5 6 0 3 .1 6 2 0 .3 4 2 0 .0 5 0
200 2 1 .5 9 0 5 .0 0 0 1 9 .6 1 0 3 .1 6 2 0 .6 7 8 0 .0 5 0
500 5 5 .9 8 0 5 .0 0 0 5 0 .7 3 0 3 .1 6 2 0 .9 7 0 0 .0 5 0

1000 1 0 2 .7 5 0 5 .0 0 0 8 7 .3 9 0 3 .1 6 2 1 .0 0 0 0 .0 5 0
a - 0 . 05 , b - 0 . 3

100 5 .0 4 0 5 .0 0 0 3 .5 6 0 3 .1 6 2 0 .0 5 2 0 .0 5 0
200 5 .7 2 0 5 .0 0 0 4 .7 2 0 3 .1 6 2 0 .0 8 8 0 .0 5 0
500 7 .0 9 0 5 .0 0 0 5 .6 9 0 3 .1 6 2 0 .1 8 5 0 .0 5 0

1000 8 .3 1 0 5 .0 0 0 5 .8 5 0 3 .1 6 2 0 .2 6 0 0 .0 5 0
a - 0 . 3 , b - 0 . 3

100 1 4 .3 4 0 5 .0 0 0 1 3 .3 9 0 3 .1 6 2 0 .4 7 1 0 .0 5 0
200 2 9 .1 1 0 5 .0 0 0 2 9 .3 7 0 3 .1 6 2 0 .7 4 6 0 .0 5 0
500 7 1 .1 3 0 5 .0 0 0 5 3 .9 9 0 3 .1 6 2 0 . 9 9 0 0 .0 5 0

1000 1 7 6 .8 0 0 5 .0 0 0 1 5 3 .5 3 0 3 .1 6 2 1 .0 0 0 0 .0 5 0

Note: T is the sample size of the Q2 statistic;

Mean, STD, P are respectively the mean, the standard deviation, and the rejection 
ftequency of the Q2 statistic;

Mean*, STD*, P* are respectively the mean, the standard deviation, and the 
rejection frequency of the x2-distribution under the null hypothesis;

a, 0, and r are the parameters of the time series.
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Table 5.7
Regression Results of The Response Surfaces 

Rejection Frequency of Q2 Statistic

171

Time Series of Linear AR(l) Process
(LIP) - L(0.05)){, - (-24.7/T + 11.80 a* - 375 a»/T + 0.0241 a*T) f, ,

(5.9) (1.06) (90) (0.0023)[5.4] [0.34] [42] [0.0009]
_____ n-36. Adjusted R»-0.9905. RSB-0.167
Time Series of Linear MA(l) Process
(L(P) - L(0.05))f, - (6.81 a - 50/T - 5.25 a* - 248 a/T + 259 a*/T + 0.0137 a»T)f, , 

(0.71) (14) (0.86) (99) (107) (0.0019)
[0.71] [13] [0.88] [91] [102] [0.0015]

_____ n-47, Adjusted R»-0.9607. RSB-0.252
Time Series of Nonlinear AR(l) Process
(LIP) - L(0.05))f, - (-15.0/T +• 2.01 a* - 64 a/T + 0.00516 a*T){, ,

(7.0) (0.19) (20) (0.00033)
[5.1] [0.16] [16] [0.00033]

_____ n-51, Adjusted R»-0.9787, RSB-0.171______________________________________
Time Series of Nonlinear MA(1) Process
(LIP) - L(0.05)) f3 - (9.39 a - 50/T - 8.9 a* - 262 a/T + 372 a*/T + 0.0184 a»T) ,  (0.71) (14) (1.0) (95) (108) (0.0031)

[0.79] [12] [1.1] [91] [96] [0.0038]
n«44, Adjusted R»-0.9663, RSE-0.229

Time Series of Threshold Autoregressive Process 
r-l(L(P) - L(0.05))fj - (2.09 a - 28.2/T * 8.3 a> - 227 a/T - 0.0040 aT + 0.0336 a*T) f, , 

(0.66) (13.2) (1.5) (60) (0.0020) (0.0065)
[0.50] [7.5] [1.4] [56] [0.0016] [0.0053]

n-25, Adjusted R>-0.9902, RSE-0.144
r-3
(L(P) - L(0.05))fj - (0.254 * 6.51 a> - 4291/T> - 0.0057 aT * 0.0463 a > T ) ,

(0.097) (0.52) (1074) (0.0018) (0.0054)
[0.080] [0.43] [930] [0.0011] [0.0041]

_____ n-25, Adjusted R»-0.9898, RSE-0.145
Time Series of GARCH(l.l) Process
(L(P) - L(0.05)) {j - (18.6 a - 38.2/T - 31.9 a> - 800 a/T + 1786 a’/T + 324 a£/T + 

(1.14) (6.6) (4.8) (120) (399) (65)
[0.99] [5.9] [3.8] [107] [337] [61]

+ 0.0126 aT + 0.041 a*T + 0.0207 a£T,
(0.0023) (0.013) (0.0034)
[0.0022] [0.010] [0.0031]

______n-83, Adjusted R»-0.9907, RSE-0.112_______________________________________

Note: L(P)=log(P/(l-P)), where P is the rejection frequency of the Q2 statistics;
g3 =  (NP(1-P))m is the heteroskedasticity transforms of the rejection frequency 
of the Q2 statistics, where N is the number of replication for each experiment; 
(.), [.] respectively denote conventional and heteroskedasticity-consistent 
coefficient standard errors;
RSE denotes residual standard errors;
n denotes the sample size (number of experiments) from which the quoted 
regression was estimated.
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Figure 5.17

Rejection Frequency of Q2-test
Time Series of Linear AR(1) Process
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Figure 5.18

Rejection Frequency of Q2-test
Time Series of Linear MA(1) Process
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Figure 5.19

Rejection Frequency of Q2-test
Time Series of Nonlinear AR(1) Process
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Figure 5.20

Rejection Frequency of Q2-test
Time Series of Nonlinear MA(1) Process
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Figure 5.21

Rejection Frequency of Q2-test
Time Series of Threshold Autoregressive Process
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Figure 5.22

Rejection Frequency of Q2-test
Time Series of GARCH(1,1) Process
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2x2 Comparison of Tests

Compareson of the three test statistics shows that the sizes of the tests under the 

null hypothesis are close to their asymptotic values for the IID time series we studied 

(see Figures 5.4, 5.5, 5.6, Tables 5.4, 5.6). For time series of AR(1) process and time 

series of linear MA(1) process, while the size of the TAR-F test under null hypothesis 

is close to the theoretical value, the BDS statistic and the Q2 statistic can reject the null 

hypothesis with large frequency (see Table 5.4, Figures 5.7, 5.8, 5.17, 5.18). For both 

the time series of linear AR(1) process and the time series of linear MA(1) process, the 

BDS statistic gives larger rejection frequency than the Q2 statistic does for the 4 sample 

sizes and all values of the coefficient considered.

For the time series of nonlinear AR(1) process, all three test statistics can reject 

the null hypothesis with large frequency (see Figures 5.9, 5.13, and 5.19). Among the 

three test statistics, the TAR-F statistic has largest rejection frequency when the nonlinear 

AR coefficient is not so large, a  <0.7. But when the nonlinear AR coefficient is large, 

say a >0.7, the TAR-F statistic has smaller rejection frequency than the BDS statistic 

and the Q2 statistic do. And in the region of a  >0.7, the BDS statistic has the highest 

rejection frequency, especially when the sample size is small, say T<200. The TAR-F 

statistic also indicates the nonlinearity is in the form of lag 1.

For the time series of the nonlinear MA(1) process, the TAR-F statistic has 

highest rejection frequency among the three test statistics (see Figures 5.10, 5.14, and 

5.20). This holds for all 4 sample sizes and for all values of the nonlinear MA coefficient
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considered, with the exception when the sample size is small (T=100 or 200) and the 

nonlinear MA coefficient is large (a  >0.7). The BDS statistic and the Q2 statistic have 

very comparable rejection frequency at the 4 sample sizes and all values of the nonlinear 

MA coefficient considered. The TAR-F statistic also indicates the nonlinearity is in the 

form of lag 1 and lag 2.

For the time series of the threshold autoregressive (TAR) process, the TAR-F 

statistic also has the highest rejection frequency among the three test statistics, at the 4 

sample sizes, at all threshold lags and for all coefficient values of the TAR process 

considered (see Figures 5.11, 5.15, and 5.21). The BDS statistic has comparable 

rejection frequency with rejection frequency of the Q2 statistic for the time series of TAR 

process with threshold lag of 3, but has much lower rejection frequency than the Q2 

statistic does for the time series of TAR process with threshold lag of 1. For the time 

series of TAR process with threshold lag of 1, 2, 3 and 4, the TAR-F statistic shows its 

ability to identify the threshold lag, which is an useful property for model building of the 

TAR process.

For the time series of GARCH(1,1) process, the BDS statistic out-performs the 

other two test statistics (see Figures 5.12, 5.16, and 5.22). The Q2 statistic gives much 

higher rejection frequency than the TAR-F statistic does, but the BDS statistic does even 

better. When the first coefficient of the GARCH(1,1) process is small and the second 

coefficient of the GARCH(1,1) process is large, i.e., when the past value of the time 

series has little influence on the current variance and the past variance has strong 

influence on the current variance, the TAR-F statistic and the Q2 statistic give low
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rejection frequency, but the BDS statistic continues to provide large rejection frequency.

In short, for the time series studied, the TAR-F statistic has the ability to pick up 

time series of nonlinear process and to identify the lag variable involved in the nonlinear 

process. The BDS statistic and the Q2 statistic have large rejection frequency for time 

series of linear process as well as for time series of nonlinear process. With the exception 

for the time series of GARCH(1,1) process where the BDS statistic has better 

performance, the TAR-F statistic is preferred for detecting the nonlinear time series.

1 8  Summary

In this chapter we studied the finite sample properties of the BDS test, the TAR-F 

test, and the Q2 test using Monte Carlo experiments. Monte Carlo experiments consisted 

of nine data generating processes (DGPs) which represent three HD time series, two 

linear processes, and four nonlinear time series processes. For each DGP we also 

considered several parameter values of DGP and four sample sizes. The results of Monte 

Carlo experiments are summarized using response surfaces. These response surfaces 

show how the variation of the test statistics can be linked to experiment sample size and 

to variation in the parameters of the DGP. Following is the summary of my Monte Carlo 

investigation.

For the study of finite sample properties of the BDS test, we first examine the 

selection of the correlation length L and the embedding dimension M for calculating the 

BDS statistic. The Monte Carlo experiments showed that the selection of L=1.5 and
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M =3 will minimize the standard deviation of the BDS statistic for all DGPs considered. 

For DGPs of IID time series, the selection of the L=1.5 and M =3 will minimize the 

deviation of the rejection frequency of the BDS statistic from the size of asymptotic test 

under the null hypothesis. For DGPs of non-EID time series, the selection of L=1.S and 

M =3 will maximize the rejection frequency of the BDS statistic. The results indicated 

that the BDS test can yield most reliable results at L=1.5 and M =3. The results here 

are important to researchers because the number of the BDS statistics to be calculated can 

be cut down and we do not have to look at many BDS statistics calculated and decide 

which one to use for hypothesis test.

With L=1.5 and M=3, the Monte Carlo experiments showed that the mean, the 

standard deviation, and the rejection frequency of the BDS statistic with finite sample for 

DGPs of IID time series are close to their respective values of asymptotic distribution 

under the null hypothesis. The mean, the standard deviation, and the rejection frequency 

of the BDS statistic with finite sample for DGPs of linear and of nonlinear time series 

processes will increase as the parameter values of DGPs increase and/or sample size 

increases. The BDS test has high power to pick up DGPs of non-IID time series 

processes. With moderate parameter values of DGPs of non-IID time series, the power 

of the BDS test reaches unity at sample size of 1000. If the parameter values of DGPs 

of non-IID time series are larger, the power of the BDS test can reach unity at smaller 

sample size.

For the TAR-F test, the rejection frequency of the TAR-F statistic with finite 

sample size for DGPs of IID time series processes and of linear time series processes is
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close to the size of finite sample test under the null hypothesis. The rejection frequency 

of the TAR-F statistic with finite sample for DGPs of nonlinear time series processes will 

increase when the parameter values of the DGPs of nonlinear time series processes 

increase and/or sample size increases. The TAR-F test has good power to reject the null 

hypothesis for DGPs of nonlinear time series processes. With moderate parameter values 

of DGPs of nonlinear time series, the power of the TAR-F reaches unity at sample size 

of 1000 except for DGP of GARCH process. The Monte Carlo experiment also showed 

that the TAR-F statistic can be used for identifying the threshold lag of a TAR process. 

This results is very useful for model building of TAR model. And it is used for modeling 

futures prices in Chapter.

For the Q2 test, the rejection frequency of the Q2 statistic with finite sample for 

DGPs of HD time series processes is close to in size to that of the asymptotic test under 

the null hypothesis. The rejection frequency of the Q2 statistic with finite sample for 

DGPs of linear and of nonlinear time series processes will increase when the parameter 

values of the DGPs increase and/or the sample size increases. The Q2 test has good 

power against DGPs of linear and of nonlinear time series processes. With moderate 

parameter values of DGPs of non-HD time series, the power of the Q2 test also reaches 

unity at sample size of 1000.

Comparing the finite sample performance of the three tests, we found that the 

BDS statistic has higher power than the Q2 statistic does against the DGPs of linear time 

series processes. The TAR-F statistic has highest power among the three against DGPs 

of nonlinear time series processes except the DGP of the GARCH process, where the
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BDS statistic has the highest power. For all three tests, their finite sample rejection 

frequency under the null hypothesis is close to that of the asymptotic test. Under the 

alternative hypothesis, where the parameter values of the DGP represent the departure 

from the null hypothesis, the power of the tests reaches unity at moderate parameter 

values of the DGP and sample size of 1000. If the parameter values of the DGP are 

larger, the power of the tests can reach unity at smaller sample size. If the sample size 

is larger, the power of the tests can reach unity at smaller parameter values of DGP. 

However, if either one or both the parameter values of DGP and the sample size are 

small, the power of these tests will be much less than unity.
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CHAPTER 6

MODELING PRICE DYNAMICS IN FUTURES MARKETS

fLi Introduction

In the last two chapters we reviewed two nonlinear time series models and 

evaluated the finite sample properties of three new statistical tests for detecting serial 

dependence in time-series data. These models and statistical tests provide us with 

information that can be used for modeling economic and financial time-series data. In this 

chapter we use findings reported in Chapter 5 to construct two econometric nonlinear 

time-series models of price movements in futures markets.

The future markets are special types of financial markets. Studies of price 

movements in futures markets are somewhat limited in comparison to those relating to 

the stock markets. Most of the past studies of futures markets relied on simple statistical 

methods such as the analysis of distribution and the autocorrelation of price changes. 

More recently, McCurdy and Morgan (1988), Baillie and Myers (1989), Yang and 

Brorsen (1993) used the GARCH model to study the price changes of some futures.

In this chapter five futures of S&P 500 index, Crude Oil, Japanese Yen, Deutsche 

Mark, and Eurodollar are studied. In the following sections, the data of futures prices

184
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are discussed. Then the data are tested for nonstationary to determine if we should use 

iog-price changes series for studying the price movements for these futures. Before we 

apply any nonlinear model, the data are tested for serial dependence and for nonlinear 

dependence. A linear model is used to fit the data and the residuals of the linear model 

are tested for serial dependence. The linear model used is a linear AR model with the 

days-of-the-week effect and the holiday effect in the conditional mean. The AR order of 

the model is determined by Akaike information criterion.

Three statistical tests used in this chapter for testing serial dependence and model 

adequacy for futures prices are the BDS test, the TAR-F test, and the Q2 test. These 

three tests are studied in Chapter 5 using Monte Carlo experiments. The results in 

Chapter 5 showed that these three tests are quite effective at detecting serial dependence. 

Therefore we can use these three tests in this chapter for detecting and modeling 

nonlinear serial dependence in futures prices.

Two nonlinear time-series models are applied to price changes of the five futures. 

The first one, the GARCH model, accounts for serial dependence in conditional variance 

and thus allows a time-varying variance. The GARCH model specified also allows 

different variance for different days of the week and holidays to accommodate the days- 

of-the-week effect and the holiday effect in variance. The GARCH model is estimated 

using maximum likelihood method.

The second model is the TAR model. It is a piece-wise linear AR model, because 

when a lagged value of the time series falls into different threshold regions the 

coefficients and variances of the linear process will take different values. The lag variable
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and the threshold region of the TAR model can be identified using an arranged recursive 

regression (see Section 4.5). Once the threshold lag and threshold regions are identified, 

the TAR model is estimated using the ordinary least squares.

The last section of this chapter summarizes the results. A comparison with 

previous studies is also provided. Finally the relation of the results to the theoretical 

financial economic models reviewed in Chapter 3 is discussed.

6.2 The Data

The futures prices studied here are the daily closing prices. Let yt be the futures 

closing price on day t, then we can calculate the log-price change1 on day t as:

x, =  log(y,) - log(yt. , ) ,

where logO denotes the natural logarithm function. Here \  also can be considered as the 

rate of price change on day t. The log-price changes are multiplied by 100 to be 

expressed in percentage terms.

Every futures contract has a maturity date. Futures contract names are derived 

from the particular month in which they mature, eg., the March contract or June 

contract. An asset can have futures contracts for every month, or every 3 months, or

1 For futures, people use the term Tog price change’ rather than the term ’return’ 
because buying a futures does not require die payment in full unless one receive the 
delivery of the asset underlying the futures.
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even every 12 months. At any time, several futures contracts of an asset with different 

maturity date can be traded. The futures contract which has the earliest maturity date is 

called a nearby contract, and the futures contract which has second earliest maturity date 

is called a first-defer contract. For a futures contract, at the end of the maturity month 

the price of the futures contract is no longer available. So if we need the log-price 

changes for several years, log-price changes of the futures from many contracts have to 

be used.

Taylor (1986) combines the log-price changes from many futures contracts by 

using the log-price changes of the nearby contract up to the month before the maturity 

month of the contract. And during the month when the nearby contract matures, the log- 

price changes of the first-defer contract is used. For example, the S&P 500 index futures 

has contracts for the months of March, June, September, and December. In January and 

February the log-price changes of the March contract are used. In March, April, and 

May the log-price changes of the June contract are used.

Because trading of a futures contract can be continued to the end of the contract’s 

maturity month, Yang and Brorsen (1993) combine the log-price changes from many 

contracts by using the log-price changes of the nearby contract up to the third Tuesday 

of its maturity month. For the example of S&P 500 futures, in January, February, and 

up to third Tuesday of March, the log-price changes of the March contract are used. 

After third Tuesday of March and up to third Tuesday of June, the log-price changes of 

the June contract are used.

In this dissertation, we combine the log-price changes from many contracts based
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on contract trading-volume. In general the contract which is being traded more actively 

and has larger trading volume also draws larger number of market participants and 

reveals more price information than a less active contract does. Thus we use the log-price 

changes of the contract which has the largest trading volume. For most futures, the 

nearby contract draws the most trading activity until a certain date in its maturity month. 

The date when the nearby contract starts to have lower trading volume than the first-defer 

contract is necessarily the first day nor the third Tuesday of the maturity month of the 

nearby contract. For example, the nearby contract of the S&P 500 futures can start to 

have lower trading volume ranging from the 7th day to the 17th day of its maturity 

month. The trading volume of the nearby contract can be as low as one fifth of the 

trading volume of the first-defer contract on the third Tuesday of the maturity month of 

the nearby contract.

Table 6.1 lists the futures studied in this chapter. The data cover nearly 10 years 

from 1984 to 1993 and consist of more than 2000 observations of daily log-price 

changes. This sample size is typical of those used in studies of futures markets.

Table 6.1 
Futures and Sample Period

F u t u r e s S am p le  P e r i o d C o n t r a c t  M onths S am p le  S i z e

S&P 500 1 / 8 4  -  8 /9 3 Mar May S ep  Dec 2444
C ru d e  O i l 1 /8 4  -  6 /9 3 E v e r y  m o n th 2385
J .  Yen 1 / 8 4  -  6 /9 3 Mar May Sep  Dec 2401
D. M ark 1 / 8 4  -  6 / 9 3 Mar May S ep  Dec 2401
E u r o d o l l a r 1 / 8 4  -  6 /9 3 Mar May Sep  Dec 2401
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In this section, the univariate time series properties of the data are examined. First 

we test the nonstationary properties of the data, and determine the procedures needed to 

reduce the nonstationarity in our analysis. Then we apply the time series statistical test 

to identify the specific form of serial dependence. Finally we estimate a linear time series 

model and test whether the linear time series model can account for the serial dependence 

in the data. In the next two section we fit two nonlinear time series models to the data.

6.3.1 Testing Nonstationary Properties of the Data

Before we attempt to model the time series of futures prices, we need to check 

whether the time series data is stationary. It is generally observed that many economic 

and financial time series data are nonstationary even when they are measured in real 

terms. When the dependent variable and the independent variable both are nonstationary, 

we can have a spurious regression where the variances of the estimated parameters are 

usually underestimated.2

Nelson and Plosser (1982) suggest that there are two kinds of nonstationary time 

series data: trend stationary and difference stationary. If the time series data is difference 

stationary, then we have to take the difference of the time series to reduce the 

nonstationary time series to stationary time series before specifying a model. The

2 For detail see Davidson and MacKinnon (1993).
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techniques used for identifying two types of nonstationary time series data are unit root 

tests. The concept of unit root tests is to test whether the polynomial of the lag operator 

in the AR process of the variable has a unit root. For example, in the following 

regression equation

y.-yt-i =  /S0 + /3,t +  (o-l)y,., +  u , , (6.3.1)

when a= 1, then the polynomial of the AR lag operator has a root equal to 1 (i.e, a unit 

root). If the test rejects the unit root, then the time series yt is not difference stationary. 

Therefore we can model y, directly without using its difference. If, however, the test fails 

to reject the unit root, we have take difference of yt to reduce the nonstationary time 

series to a stationary time series before we specify a model for yt. A simple and popular 

test for unit root is the Dickey-Fuller test developed by Fuller (1976) and Dickey and 

Fuller (1979). The statistic in a Dickey-Fuller test is the t value (call r  statistic) of the 

coefficient (a-1), and its critical values are provided by Dickey and Fuller (1979).3 The 

augmented Dickey-Fuller test (ADF test) also include the lagged terms of y,-y,.i in the 

regression equation.

In this section we report results of a unit root test in log-prices of the futures. If 

the unit root is accepted, then we need to use the first difference of the log-prices (i.e., 

the log-price change) in the model building. Furthermore, we test for unit root in the log-

3 The table of the critical values of Dickey-Fuller tests also can be found in books 
such as Harvey (1989), Davidson and MacKinnon (1993).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

191

price changes to see if we need to use first difference of log-price changes for model 

building. Thus if yt is the log-price of futures, denote y^y,^ as Ay„ then the ADF test of 

unit root in log-price is based on:

Ayt =  00 +  0it + (a-l)y,-i + Ei-uo + u» - (6-3.2)

The log-price change of the futures is x, =  yt-yt-i» and its unit root test is based on:

Ax, = ft, + 0,t +  (a-l)x,., +  E i.ltl0 Ax,.j + vt . (6.3.3)

The results of unit root test on both log-prices and log-price changes of the futures 

are shown in Table 6.2. The results indicate that the time series of log-prices have unit 

roots. Thus we need to use first difference of the log-price (i.e., log-price change) to 

reduce the nonstationary time series to stationary time series for modeling of futures 

prices. The test rejects the unit root in time series of log-price changes. Therefore we do 

not need to use the first difference of the log-price changes for modeling futures prices.

Table 6.3 provides summary statistics of the log-price changes of these futures. 

All the means are not statistically different from zero. The estimated variances of the 

daily log-price changes are very different from futures to futures. All of the futures daily 

log-price changes are skewed. The skewness is negative for S&P 500 futures and for 

Crude Oil futures, but is positive for Japanese Yen futures, for Deutsche Mark futures, 

and for Eurodollar futures. All the kurtosis is significantly different from that of the
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normal distribution.

6.3.2 Diagnostic Testing and Linear Time Series Models

The next step in analyzing the futures prices is to test for serial dependence in 

log-price changes. The tests used here are the BDS test, the TAR-F test, the Q2 test, and 

the Bispectral test (see Section 4.7), as well as the traditional Ljung-Box Q test. The 

results of these tests on log-price changes for the five futures are presented in Table 6.4.

The Ljung-Box Q statistic shows that there is linear dependence in log-price 

changes of S&P 500 futures, of Crude Oil futures, and of Eurodollar futures. The Q2 

statistic shows that there is serial dependence in the square of the log-price changes of 

all five futures. The large Q2 statistic can be the results of linear dependence or the 

results of nonlinear dependence such as the GARCH process. The BDS statistic rejects 

the null hypothesis of IID for log-price changes of all five futures. The TAR-F statistic 

rejects the linear time series model for log-price changes of S&P 500 futures, of Crude 

Oil futures, of Deutsche Mark futures, and Eurodollar futures. The large TAR-F statistic 

can be the results of nonlinearity in the conditional mean, such as TAR process. The 

Bispectral test rejects linear time series process for all futures except Crude Oil futures.

Because the BDS statistic rejects the IID null hypothesis for log-price changes of 

all five futures, we first investigate if the rejection of IID is the results of days-of-the- 

week effect in the conditional mean and of the linear AR process. So a linear regression 

model of log-price changes is fitted for each of five futures:
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(6.3.4)

where et follows a stationary process. The D;S are the dummy variables for days-of-the- 

week, D, is for Monday, D2 is for Tuesday, D3 is for Wednesday, and D4 is for 

Thursday, the Friday is the base case. The DH is the dummy variable for holidays. The 

lag length p of the AR process is determined by the Akaike information criterion. The 

estimated coefficient of the model and the test results of serial dependence in the 

residuals are presented in Table 6.5.

For S&P 500 futures, the days-of-the-week effect in the conditional mean is not 

significant. The holiday effect in conditional mean is not significant either. Some 

coefficients of the AR process are significant, at lag values of 2 ,4 , and 5. The residuals 

of the model pass the Ljung-Box test. But they do not pass neither the Q2 test nor the 

BDS test. So the log-price changes of the S&P 500 futures can not be adequately 

modeled by the linear model. This suggest that a nonlinear time series model, such as 

the GARCH model or the TAR model, may be more appropriate for log-price changes 

of S&P 500 futures.

For Crude Oil futures, both the days-of-the-week effect and the holiday effect in 

conditional mean are not significant. The coefficients of AR process are significant at 

lags of 3, 4, 5, 7, and 8. The residuals of the model can pass the Ljung-Box test. But 

they can not pass neither the Q2 test nor the BDS test. Therefore we conclude that the 

log-price changes of the Crude Oil futures has to be modeled by a nonlinear time series 

model rather than a linear model.
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For Japanese Yen futures and Deutsche Mark futures, the days-of-the-week effect 

and the holiday effect in the conditional mean are not significant. The residuals of the 

linear model pass the Ljung-Box test. But the residuals do not pass neither the Q2 test nor 

the BDS test. This result indicates that the log-price changes of Japanese Yen futures and 

of the Deutsche Mark futures can not be modeled by linear models and they have to be 

modeled by nonlinear time series models.

For the Eurodollar futures, the days-of-the-week effect in conditional mean is 

significant for the constant term (Friday) and Monday. The prices tend to raise on 

Fridays and fall on Mondays. The holiday effect in conditional mean is also significant, 

and the prices tend to fall during the holidays. The effect of AR process is also 

significant. The residuals of the model pass the Ljung-Box test, but they failed to pass 

the Q2 test and the BDS test. The results suggest that linear models are not suitable for 

the log-price changes of Eurodollar futures, and nonlinear time series models should be 

used.
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Table 6.2
Test of Unit Root in Log-prices and Log-Price Changes

( « - l ) r  s t a t i s t i c (a -1 ) r  s t a t i s t i c

S&P 500
L o g - p r i c e s  

- 0 . 0 0 8 5  - 2 . 8 1
L o g - p r i c e  C hanges  

- 1 . 2 3  -1 5 .6 4 *
C ru d e  O i l - 0 .0 0 5 0 - 2 . 3 7 - 1 . 0 8 -1 4 .7 3 *
J .  Yen - 0 .0 0 1 6 - 1 . 5 7 - 0 . 8 9 -1 3 .5 7 *
D. M ark - 0 .0 0 2 0 - 1 . 4 4 - 0 . 9 4 -1 4 .1 0 *
E u r o d o l l a r - 0 . 0 0 2 1 - 1 . 7 5 - 0 . 8 9 -1 4 .0 2 *

■ Denotes rejection of the null hypothesis of an unit root. The critical value of the t  
statistic at 5% level is -3.45.

Table 6.3
Summary Statistics of Daily Futures Log-Price Changes

F u t u r e s Maximum Minimum Mean V a r . Skew. K u r t .

S&P 500 1 7 .7 5 - 3 3 .7 0 0 .0 2 7 7 1 .6 5 4 -6 .6 9 0 * 210 .8*
C ru d e  O i l 1 4 .0 3 - 3 8 .4 1 0 .0 2 2 4 5 .6 2 6 -1 .9 4 6 * 35 .16*
J .  Yen 5 .3 3 - 4 . 1 3 0 .0 2 5 1 0 .4 5 3 0 .405* 4 .1 2 *
D. M ark 4 .8 3 - 3 . 3 1 0 .0 1 6 2 0 .6 0 9 0 .156* 1.90*
E u r o d o l l a r 0 .2 9 7 - 0 .1 0 6 0 .0 0 1 5 0 .0 0 0 5 3 1 .128* 13 .76*

* Denotes rejection of the null hypothesis of a normal distribution (see Judge et. al., 
1988, p 891, for the definition and the asymptotic distribution of skewness and kurtosis).

Table 6.4
Test of Serial Dependence in Futures Log-Price Changes

F u t u r e s Q(24) Q’ (24) BDS TAR-F B i s p e c t r a l

S&P 500 109* 207* 8 .7 3 * 3 2 .9 2 * 3 .15*
C ru d e  O i l 76 .1* 221* 2 1 .1 6 * 5 .27* 1 .8 4
J .  Yen 2 9 .2 90 .9* 6 .9 7 * 0 .8 4 3 .62*
D . Mark 2 4 .3 156* 3 .09* 2 .4 5 * 3 .1 0 *
E u r o d o l l a r 4 4 .6 105* 6 .1 2 * 3 .9 4 * 6 .4 6 *

* Denotes rejection of the null hypothesis.
The Ljung-Box Q statistic and the McLeod-Li Q2 statistic are calculated at lag 24. 

The BDS statistic is calculated at L=1.5 and M =3. The TAR-F statistic is calculated at 
d=3 and p = 10, where the results of TAR-F statistic at other threshold lag d are similar. 
The Bispectral test is calculated at the grid size of 49 and the smooth length of 63.
At 1% significant level, the critical value for Q test and Q2 test is 42.98, the critical 
value for BDS test and Bispectral test is 2.23, the critical value for TAR-F test is 2.25.
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Table 6.5
Estimated Linear Models and Test of Serial Dependence in Residuals

__________S&P 500 C ru d e  O i l  J .  Y en D. M ark E u r o d o l l a r

c - 0 .0 4 4
(0 .0 5 8 )

P i 0 .0 8 2
(0 .0 8 2 )

P i 0 .1 1 5
(0 .0 8 1 )

P i 0 .1 3 2
(0 .0 8 1 )

p « 0 .0 5 8
(0 .0 8 1 )

p« - 0 .0 7 0
(0 .1 4 9 )

b l - 0 .0 1 6
( 0 .0 2 0 )

b 2 0.159*
( 0 .0 2 0 )

b 3 - 0 . 0 1 9
(0 .0 2 0 )

b« -0 .0 6 2 *
(0 .0 2 0 )

b 5 0.072*
(0 .0 2 0 )

b*

b ,

b .

- 0 . 0 5 5 0 .0 0 1 5
(0 .1 0 9 ) (0 .0 3 1 )
0 .0 8 5 0 .0 2 7
(0 .1 5 6 ) (0 .0 4 3 )

- 0 . 0 3 4 0 .0 0 7 9
(0 .1 5 3 ) (0 .0 4 3 )
0 .1 4 0 0 .0 2 3
(0 .1 5 2 ) ( 0 .0 4 3 )
0 .2 0 9 0 .0 6 8
(0 .1 5 3 ) ( 0 .0 4 3 )

- 0 . 0 1 3 - 0 . 0 5 4
(0 .2 7 4 ) (0 .0 8 0 )
0 .0 3 2
(0 .0 2 1 )

- 0 . 0 3 5
(0 .0 2 1 )

- 0 . 0 7 8 ’
(0 .0 2 1 )
0 .058*
(0 .0 2 1 )

-0 .0 9 3 *
(0 .0 2 1 )
0 .0 0 0 4
(0 .0 2 1 )
0 .193*
(0 .0 2 1 )

-0 .0 8 0 *
(0 .0 2 1 )

- 0 . 0 2 6 0 .0 0 2 0 2
(0 .0 3 6 ) (0 .0 0 1 0 5 )
0 .0 5 8 - 0 . 0 0 2 3
(0 .0 5 1 ) ( 0 .0 0 1 5 )
0 .0 4 9 0 .0 0 2 1
(0 .0 5 0 ) (0 .0 1 5 )
0 .0 5 9 - 0 . 0 0 1 0
(0 .0 5 0 ) ( 0 .0 0 1 5 )
0 .0 5 6 - 0 . 0 0 1 0
(0 .0 5 0 ) ( 0 .0 0 1 5 )

- 0 . 0 5 8 -0 .0 0 5 7 *
(0 .0 9 2 ) ( 0 .0 0 2 7 )

-0 .0 8 4 *
( 0 .0 2 0 )

T e s t  o f  S e r i a l  D e p e n d e n c e  i n  R e s i d u a l s
Q (24) 3 3 .3  3 2 . 0  2 9 . 1  2 4 . 9  2 9 . 6
QJ (24) 67 .0*  231* 9 0 .1 *  157* 114*
BDS 8 .18*  2 0 .0 7 *  7 .1 4 *  3 .1 1 *  6 .2 1 *

* Denotes rejection of the null hypothesis. * Significant at 5% level. 
Standard errors of the estimated parameters are in parentheses.
See the notes for Table 6.4.
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In the last section, we tested and found that the log-price changes of all five 

futures have serial dependence. The log-price change of each futures are fitted by a linear 

model (which also includes the days-of-the-week effect as well as the holiday effect in 

the conditional mean), the residuals of the model do not pass neither the Q2 test nor the 

BDS test. This indicates that the log-price changes of all five futures have to be modeled 

by nonlinear models. In this section we examine whether the GARCH model is 

appropriate for modeling the log-price changes of these five futures.

The GARCH(1,1) model is specified as:

x, = C +  £*.,,4 frfy + 0hDH + Ej.,iP bjXt.j +  e , , et -  N(0,h,)

-h, =  a<> + aie2,., +  a2 h,., +  LimlA a A  + aHDH . (6.4.1)

The D|S dummies for the days-of-the-week effect and the DH is the dummy for holiday 

effect. In this model, the conditional mean of the log-price changes has AR process, the 

days-of-the-week effect, and the holiday effect. The lag of the AR process in the 

conditional mean is determined by the Akaike information criterion in the last section. 

The conditional variance of log-price changes is an autoregressive process of past sample 

variance and past conditional variance. The model also has the days-of-the-week effect 

and the holiday effect in the conditional variance. The GARCH model is estimated by 

maximum likelihood method. The results of the estimation are presented in Table 6 .6 .
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Our findings based on the GARCH model are as follows. For the conditional 

mean of log-price changes in the model, the results of the days-of-the-week and holiday 

effect produce little change from results of the linear model estimated in last section. 

However, fewer coefficients of the AR process remain significant for S&P 500 futures 

and the Crude Oil futures. This implies that if we omit the effect of a GARCH process, 

we may incorrectly make inference about the existence of the AR process in the 

conditional mean of log-price changes.

For the conditional variance of log-price changes in the model, the effect of 

sample variance and the effect of conditional variance in last period is significant. But 

the effect of past sample variance is less than the effect of past conditional variance. All 

futures have significant days-of-the-week and holiday effect in variance.4 For Crude Oil 

futures the variance on Mondays is large but the variance is small for rest of the week. 

For Eurodollar futures the opposite is true. For all the futures except Eurodollar futures, 

the variance in mid-week is smaller than the variance on Mondays and Fridays. For all 

five futures, the variance over the holidays are significantly large, especially for the 

Crude oil futures. The results are in support of the calendar time hypothesis than the 

trading time hypothesis.

The test results for serial dependence in the standardized residual of the GARCH 

model are also presented in Table 6 .6 . For Japanese Yen, Deutsche Mark, and

^ e  TSP program used for estimation of GARCH reported that the days-of-the-week 
effect on Monday can not be estimated for S&P 500 futures due to singularity of the 
data. This is probably caused by the large decline of stock prices on Black Monday of 
1987.
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Eurodollar futures, the standardized residuals pass the Ljung-Box, Q2, and BDS test. The 

results imply that the standardized residuals of the GARCH model HD. Therefore we 

conclude that the GARCH process can adequately model the log-price changes of these 

three futures. The standardized residuals of the S&P 500 futures and of the Crude Oil 

futures pass the Ljung-Box test and the Q2 test. But they do not pass the BDS test. 

Therefore we have to look for other models to analyze the log-price changes of S&P 500 

futures and Crude oil futures.

Yang and Brorsen (1993) also found the serial dependence in the standardized 

residuals of the GARCH model for the log-price changes of some futures they studied. 

They suggested the use of a higher order GARCH model.5 For S&P 500 and Crude Oil 

futures, because the value of Q2 statistics for the standardized residuals of the GARCH 

model is low, this implies that the standardized residuals are unlikely to have 

autocorrelation in their squared values. And the BDS test’s rejection of IID for 

standardized residuals of the GARCH model is probably not the results of higher order 

autoregressive conditional heteroskedasticity. Therefore using of higher order GARCH 

model will not be effective at removing the serial dependence in the standardized 

residuals of the model. Based on the large TAR-F statistic from the log-price changes of 

S&P 500 futures and of Crude Oil futures calculated in the last section, we apply the 

TAR model to study the price changes of these 2 futures in the next section.

5 Brock, Hsieh, and LeBaron (1991) also found the GARCH model can not model 
all the nonlinearities in the log price change of most of foreign currencies they studied. 
And their modeling of the price changes in foreign currencies was stopped at the 
GARCH model.
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Table 6 .6

Estimated GARCH(l.l) Models and Test of Serial Dependence in Residuals

S&P 500 C ru d e  O i l J .  Yen D. Mark E u r o d o l l a r

c 0 . 0 1 7 0 . 0 3 2 - 0 . 0 1 3 - 0 . 0 1 5 0.0022*
(0 . 0 4 5 ) ( 0 . 0 5 8 ) ( 0 . 0 3 1 ) ( 0 . 0 3 5 ) ( 0 . 0 0 1 0 )

f t 0.269* 0 . 0 7 7 0 . 0 3 2 0 . 0 3 9 - 0 . 0 0 3 3 *
( 0 . 0 6 3 ) ( 0 . 0 8 7 ) ( 0 . 0 4 6 ) ( 0 . 0 5 0 ) ( 0 . 0 0 1 2 )

f t 0 . 0 9 8 - 0 . 1 2 4 0 . 0 3 4 0 . 0 3 3 - 0 . 0 0 0 1 8
(0 . 0 6 1 ) ( 0 . 0 8 4 ) ( 0 . 0 4 3 ) ( 0 . 0 4 9 ) ( 0 . 0 0 1 2 2 )

f t 0 . 0 7 5 - 0 . 0 2 3 0 . 0 2 8 0 . 0 5 1 - 0 . 0 0 0 7 2
( 0 . 0 5 6 ) ( 0 . 0 8 1 ) (0 . 0 3 9 ) ( 0 . 0 4 5 ) ( 0 . 0 0 1 2 2 )

f t - 0 . 0 1 7 0.152* 0 . 0 5 5 0 . 0 5 0 - 0 . 0 0 0 5 3
(0 . 0 6 5 ) (0 . 0 7 5 ) (0 . 0 4 2 ) ( 0 . 0 4 8 ) ( 0 . 0 0 1 3 4 )

f t -0 .2 4 1 * 0 . 0 3 2 - 0 . 1 2 7 - 0 . 0 7 2 - 0 . 0 0 3 7
(0 . 1 0 8 ) ( 0 . 1 4 8 ) ( 0 . 0 7 1 ) ( 0 . 0 9 5 ) ( 0 . 0 0 2 4 )

bx - 0 . 0 0 1 7
(0 . 0 0 1 9 )

0 . 0 1 3
( 0 . 0 1 7 )

- 0 . 0 7 8 *
( 0 . 0 2 4 )

b 2 - 0 . 0 0 6 8
(0 . 0 1 8 )

0 .0 0 0 4
(0 . 0 1 7 )

b 3 - 0 . 0 0 1 9
( 0 . 0 2 0 )

0 .057*
(0 . 0 1 6 )

b« 0 . 0 0 8 8
(0 . 0 1 9 )

0 . 0 0 4
(0 . 0 1 7 )

b 5 0 . 0 1 7
( 0 . 0 1 9 )

0 . 0 2 7
(0 . 0 1 6 )

b 6 - 0 . 0 3 1
(0 .0 1 7 )

b 7 0.036*
(0 . 0 1 7 )

b . - 0 . 0 1 0
(0 . 0 1 8 )

<*o 0.083* 0 . 0 1 9 0.119* 0.142* 0 . 0 0 0 2 7
( 0 . 0 2 6 ) ( 0 . 0 8 6 ) ( 0 . 0 1 9 ) ( 0 . 0 3 6 ) ( 0 . 0 0 0 2 )
0 .0196* 0.043* 0.089* 0.0604* 0.114*
(0 . 0 0 1 1 ) ( 0 . 0 0 3 2 ) ( 0 . 0 1 1 ) ( 0 . 0 0 8 7 ) ( 0 . 0 0 6 )
0 .864* 0.915* 0.828* 0.887* 0.837*
( 0 . 0 1 4 ) (0 . 0 0 6 5 ) (0 . 0 1 9 ) ( 0 . 0 1 7 ) ( 0 . 0 0 9 2 )

®i 0.819* - 0 . 0 5 6 - 0 . 0 9 7 - 0 . 0 0 0 5 3 1 *
(0 . 1 4 9 ) ( 0 . 0 3 6 ) ( 0 . 0 6 2 ) (0 . 0 0 0 0 3 6 )

a 2 - 0 . 0 5 4 -0 .5 5 5 * - 0 .1 2 9 * - 0 . 2 1 5 * - 0 . 0 0 0 2 6 *
(0 . 0 6 8 ) ( 0 .1 5 0 ) ( 0 . 0 2 9 ) ( 0 . 0 5 6 ) ( 0 . 0 0 0 0 2 6 )

a 3 -0 .1 7 8 * - 0 . 0 7 9 -0 .1 7 5 * - 0 . 2 1 5 ’ - 0 .0 0 0 2 8 *
( 0 . 0 5 8 ) ( 0 . 1 0 7 ) (0 . 0 2 6 ) ( 0 . 0 4 8 ) ( 0 . 0 0 0 0 2 4 )

a« 0 .290* - 0 . 0 1 3 - 0 .0 4 1 6 * - 0 . 0 5 3 - 0 . 0 0 0 1 7 *
( 0 . 0 6 1 ) (0 . 1 5 5 ) (0 . 0 0 3 0 ) ( 0 . 0 5 2 ) ( 0 . 0 0 0 0 2 8 )

a H 0.280* 0.938* 0.220* 0.220* 0 . 0 0 0 2 1 ’
( 0 . 0 6 8 ) ( 0 . 1 3 6 ) (0 . 0 4 9 ) ( 0 . 0 4 9 ) (0 . 0 0 0 0 2 3 )

T e s t  o f  S e r i a l  D e p e n d e n c e  i n  S t a n d a r d i z e d  R e s i d u a l s
Q (24) 2 2 . 0 3 5 . 8 2 2 . 5 2 2 . 5 2 8 . 4
Q * (24) 7 . 6 8 3 5 . 5 1 4 . 6 2 0 . 3 1 8 . 1
BDS 1.78* 4.7 7* 0 . 7 6 - 1 . 5 5 - 2 . 8 5

1 Denotes rejection of the null hypothesis. * Significant at 5% level.
Standard errors of the estimated parameters are in parentheses.
See the notes for Table 6.4. At 1 % significant level, the critical value of the BDS test 
on the standardized residuals of GARCH model is 1.S9 (see Brock et. al., 1991, p 279).
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Although the log-price changes of three futures considered can be adequately 

modeled by the GARCH process, the log-price changes of S&P 500 futures and of Crude 

Oil futures are not modeled well by the GARCH process because their standardized 

residuals do not pass the BDS test. We also recall that in Section 6.3 it was reported that 

the log-price changes of S&P 500 futures and of Crude Oil futures has high values of 

TAR-F statistic. This finding suggested the existence of a TAR process in the data. In 

this section we apply the TAR model to the log-price changes of S&P 500 futures and 

of Crude Oil futures using the modeling procedures of Tsay (1989).

The first step to model the TAR process is to determine the threshold lag of the 

TAR process. Here we calculate the TAR-F statistic of the log-price changes at threshold 

lags of 1 to 5. The AR order used in the calculation are 5 for S&P 500 futures and 8  for 

Crude Oil futures, where the AR orders are determined in Section 6.3 by using Akaike 

information criterion. The results of the TAR-F statistic for S&P 500 futures and for 

Crude Oil futures are presented in Table 6.7.

From Table 6.7, we can see that the TAR-F statistic is very large at threshold 

lags of 1 to 5 for log-price changes of S&P 500 futures. The TAR-F statistic at threshold 

lag of 1 is the highest. Thus we pick the threshold lag of 1 for the TAR model of log- 

price changes of S&P 500 futures. For log-price changes of Crude Oil futures, the TAR- 

F statistic is also high for all 5 threshold lags considered. But at the threshold lag of 2, 

the TAR-F statistic is substantially higher than the TAR-F statistic at other threshold
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lags. Therefore a threshold lag of 2 is used for estimating the TAR model for log-price 

changes of Crude Oil futures.

For S&P 500 futures, the arranged recursive regression of the log-price changes 

is performed with the threshold lag of 1 and the AR order of 5. The scatter-plot of the 

t-values of the AR coefficients is presented in Figure 6.1. The scatter-plot of the t-values 

of the AR coefficients is used for determining the threshold values of the model. The 

places where the t-values have big change are the location of the threshold values. We 

can see that the t-values of the coefficient has large changes at -0.62 and 1.15. These two 

values are identified as the threshold values of the model, and the following TAR model 

is specified:

x, = C1 +  E,.w /3*iDi + /3’hDH + Ej.liS b^x,  ̂ +  elt , x^ < -0.62 ,

= C2 +  Ej. 1(4 02tDj + 02hDH + Ej. , .5  bjXt.j +  e2t , -0.62 <£ xM < 1.15 ,

= C3 +  Ej. ,,4  0 ^  + 03hDH + Ej_ lt5 b3jX,.j +  e3t , x,., £  1.15 ,

where D,s are the dummy variables for days-of-the-week, DH is the dummy variable for

holidays, and e\’s are IID with zero mean and variance a*2. The results of the estimated 

TAR model for the log-price changes of S&P 500 futures are presented in Table 6 .8 .

For log-price changes of S&P 500 futures, the results of the estimated TAR model 

show that in the threshold region I, when the price of last period declined by more than 

0.62 percent, the days-of-the-week effect and the holiday effect in conditional mean are 

not significant. But two of the AR coefficients are significant, which are -0.10 at lag 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

203

and 0.28 at lag S. In the threshold region n, when the price changes of last period is 

between -0.62 and 1.15 percent, the AR coefficients are not significant and the days-of- 

the-week effect in conditional mean becomes significant for Mondays and for 

Wednesdays. The holiday effect in conditional mean is still not significant. In the 

threshold region m , when the price in last period raised by 1.15 percent or greater, the 

days-of-the-week effect is not significant. The three AR coefficients are significant at lag 

2, 4, and 5. Except at lag 1, all other 4 AR coefficients have negative sign where in 

threshold region I they have positive sign. The results shows that for S&P 500 futures, 

when the price changes in last period falls into different threshold regions, the price 

changes in the current period will follow different linear process because in different 

threshold regions the coefficients and residual variance of the linear process are different.

The test results for serial dependence in the standardized residuals of the TAR 

model are also presented in Table 6 .8 . The standardized residuals pass the Ljung-Box Q 

test, the Q2 test, and the BDS test. These results confirm that the standardized residuals 

are IID and the log-price changes of S&P 500 futures can be modeled quite well by a 

TAR process.

For Crude Oil futures, the arranged recursive regression of the log-price changes 

is conducted with threshold lag of 2 and an AR order of 8 . The scatter-plot of the t- 

values of the AR coefficients for log-price changes of Crude Oil futures is presented in 

Figure 6.2. We can observe that the t-values start to decline in absolute value at 0.21. 

Base on this, the following equation is applied to model the log-price changes of Crude 

Oil futures:
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x, = C1 + E ,.m + /3'hDH + Ej.1|g b'jX̂ j +  e1, , x,.2 <  0.21 ,

= C2 + £ ,.,.4  /32A  +  02hDH + Ej.,,8  b̂ jXj.j + e2 , x,.2 2s 0.21 ,

again the D:s are the dummy variables for days-of-the-week, DH is the dummy variable 

for holiday, and e‘t’s are IID with zero mean and variance o*2. The results of the 

estimated TAR model for the log-price changes of Crude Oil futures are also presented 

in Table 6 .8 .

For Cmde Oil futures, in the threshold region I, when the price change from 2 

periods ago is less than 0.21 percent, the AR coefficients are significant at lag of 3, 4, 

5,7,  and 8 . These coefficients either have opposite sign or have large difference in value 

than their counter part in region n . We also see that in region II, when the price change

from 2 periods ago is 0.21 percent or greater, the AR coefficient at lag 1, S, and 7 are

significant. The coefficients at lag 1 and 7 have opposite sign of the coefficients at lag 

1 and 7 in region I. In region II the AR coefficient at lag 5 is less than half in magnitude 

than the coefficient at lag 5 in region I. In both regions, the days-of-the-week effect and 

the holiday effect in conditional mean are not significant.

The test results for serial dependence in the standardized residuals of the TAR 

model for log-price changes of Crude Oil futures are presented in Table 6 .8 . The 

standardized residuals pass the Ljung-Box Q test, but they do not pass either the Q2 test 

nor the BDS test. Because the large value of Q2 statistic, we conclude that the failure of 

the standardized residuals to pass these test is due to the serial dependence in conditional 

variance.
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To deal with the serial dependence in the standardized residuals of TAR model 

of log-price changes of Crude Oil futures, we consider the following. First, the

estimation of TAR model indicates that when the threshold variable x,.2 falls into two

different regions, the log-price changes will follow to different processes. Second, the 

Q2 statistic of the TAR model’s standardized residuals is very large, which indicates the 

serial dependence in the conditional variance. Third, the estimation of the GARCH model 

for log-price changes of Crude Oil futures in last section showed the strong serial 

dependence in conditional variance. Therefore we try a combined TAR-GARCH model 

in order to account both the conditional variance change and conditional mean change in 

the log-price changes of Crude Oil futures. The model is specified as:

x, = C +  Ei.i.4 0 A  + 0hDH + Ej_ li8 b2jXt_j + Ej_1>g b'jD x,.j +  e( , et ~  N(0,h,) 

h, = Oq + aje2,., +  a 2 h,., +  a A  + aHDH ,

D =  1 if x,.2 <  0.21 , and 0 elsewhere,

where As are the dummy variables for days-of-the-week, DH is the dummy variable for 

holidays. The introducing of the dummy variable D here allows the AR coefficients to 

be different in different threshold region. The results of the estimated model for the log- 

price changes of Crude Oil futures are presented in Table 6.9.

From the results reported in Table 6.9, we see that the days-of-the-week effect 

and the holiday effect in conditional mean are insignificant. The AR coefficient with 

dummy variable at lag 5 is significant. This shows that the conditional mean of log-price
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changes follows a different AR process in different threshold regions. The serial 

dependence in conditional variance is strong, and the days-of-the-week effect and the 

holiday effect in variance is significant, just as we observed in the GARCH model 

discussed in the last section.

The test results for serial dependence in the standardized residuals of the model 

are presented in Table 6.9 as well. The standardized residuals pass the Ljung-Box test, 

the Q2 test, and the BDS test. Therefore we conclude that the combined TAR-GARCH 

model specified can adequately describe the log-price changes of Crude Oil futures.

Table 6.7
TAR-F Statistic for Log-price Changes

T h r e s h o l d  Lag S&P 500 C r u d e  O i l

1 3 9 .1 2* 4.2 4*

2 33.83* 1 3.9 1*

3 35 .82 * 6.00*

4 35 .52 * 2. 99*

5 24 .5 6 * 6.67*

* Denotes the rejection of null hypothesis.
Note: The AR order used for calculating TAR-F statistic are respectively 5 and 8 for 

S&P 500 futures and Crude Oil futures. The selection of the AR orders is based 
on the results of Akaike information criterion in Section 6.3.
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Table 6.8
Estimated TAR Models and Test of Serial Dependence in Residuals

R e g i o n  I  
0.62)

S&P 500 
R e g i o n  I I  

(-o.62axt.1« i . i s )
R e g i o n  I I I
(xt.̂ i.is)

Cr ud e  
R e g i o n  I
(x,.]<0.21)

O i l
R e g i o n  I I  
(̂ .,>0.21)

c - 0 . 2 3 7 - 0 . 0 5 3 0 . 3 6 0 - 0 . 1 0 8 - 0 . 0 4 5
( 0 . 2 1 2 ) ( 0 . 0 5 0 ) (0 .2 8 6 ) ( 0 . 1 5 2 ) ( 0 . 1 7 5 )

P x - 0 . 1 9 5 0 . 1 4 2 0 . 5 9 0 0 . 0 7 0 0 . 0 2 9
( 0 . 2 7 5 ) (0 . 0 7 1 ) ( 0 .3 1 3 ) (0 . 2 1 3 ) ( 0 . 2 2 5 )

P x 0 . 3 9 6 0 . 0 7 8 0 . 0 4 7 0 . 0 8 3 - 0 . 3 4 2
( 0 . 2 8 7 ) (0 . 0 7 0 ) (0 .2 8 7 ) ( 0 . 2 0 3 ) ( 0 . 2 3 3 )

P x 0 . 1 4 3 0 . 1 3 4 - 0 . 1 9 4 0 . 0 5 6 0 . 1 1 8
( 0 . 2 7 8 ) (0 . 0 7 1 ) ( 0 .2 8 2 ) ( 0 . 2 0 5 ) ( 0 . 2 2 5 )

P a 0 . 1 8 2 0 . 0 4 5 - 0 . 0 3 2 0 . 2 6 4 0 . 0 6 5
( 0 . 2 8 6 ) (0 . 0 6 9 ) ( 0 .3 0 0 ) ( 0 . 2 0 2 ) ( 0 . 2 3 2 )

P r 0 . 0 9 9 - 0 . 1 3 4 - 0 . 1 6 2 0 . 1 6 5 - 0 . 0 0 5
( 0 . 5 2 6 ) (0 .1 2 5 ) ( 0 .6 4 2 ) ( 0 . 3 5 7 ) ( 0 . 4 2 3 )

P i - 0 .1 0 0 * - 0 . 0 1 1 -0 . 19 2* - 0 . 0 4 6 0.102*
( 0 . 0 5 1 ) ( 0 . 0 5 1 ) ( 0 .1 0 2 ) ( 0 . 0 2 9 ) ( 0 . 0 2 9 )

bl. 0 . 1 3 7 - 0 . 0 3 9 -0 . 395* - 0 . 0 5 9 0 . 0 1 4
( 0 . 0 8 0 ) ( 0 .0 2 4 ) ( 0 .0 35 ) ( 0 . 0 3 2 ) ( 0 . 0 4 3 )

P x 0 . 1 3 2 - 0 . 0 0 4 - 0 . 0 2 1 - 0 . 1 2 7 * - 0 . 0 1 2
( 0 . 0 8 5 ) ( 0 . 0 2 3 ) ( 0 .0 5 1 ) ( 0 . 0 2 7 ) ( 0 . 0 3 1 )

b1* 0 . 0 5 0 - 0 . 0 1 8 -0 .3 48* 0.100* 0 . 0 3 2
( 0 . 0 5 0 ) (0 .0 2 4 ) ( 0 .0 7 6 ) ( 0 . 0 3 1 ) ( 0 . 0 2 7 )

P s 0.276* - 0 . 0 2 4 -0 . 194* - 0 .1 3 8 * - 0 . 0 5 7 *
( 0 . 0 5 9 ) (0 . 0 2 4 ) ( 0 .0 5 0 ) ( 0 . 0 3 2 ) ( 0 . 0 2 6 )

P t - 0 . 0 3 2 0 . 0 2 6
( 0 . 0 2 9 ) ( 0 . 0 2 9 )

bS 0.086* - 0 . 0 6 5 *
( 0 . 0 2 7 ) ( 0 . 0 3 1 )

P , -0 .1 2 2 * - 0 . 0 1 2
( 0 . 0 2 7 ) ( 0 . 0 3 2 )

a 1 1 . 9 1 0 . 9 2 1 . 3 9 2 . 3 3 2 . 3 4

T e s t  o f  S e r i a l  D e p e n d e n c e  i n  S t a n d a r d i z e d  R e s i d u a l s
Q 1 7 . 9 25 . 6
Q* 2 4 . 4 248*
BDS - 1 . 0 0 19 .59*

* Denotes rejection of the null hypothesis. * Significant at 5% level. 
Standard errors of the estimated parameters are in parentheses.
See the notes for Table 6.4.
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Table 6.9
Estimated TAR-GARCH Model For Log-price Changes of Crude Oil Futures

And Test of Serial Dependence in Residuals

R e g i o n  I  (x, . . ,<0.21) R e g i o n  I I  (x t .2a 0 . 2 1 )
( P a r a m e t e r s  w i t h  Dummy D) (B ase  C ase )

c 0 . 0 0 0 3
( 0 . 0 6 2 )

Pi - 0 . 0 0 6
( 0 . 0 8 5 )

Pi - 0 . 0 1 2
( 0 . 0 7 5 )

Pi 0 . 0 0 6
(0 . 0 7 8 )

p* 0 . 1 0 9
(0 . 0 7 6 )

Pn - 0 . 0 1 1
( 0 . 1 2 7 )

b 1! 0 . 0 4 4 - 0 . 0 0 6
( 0 . 0 4 6 ) ( 0 . 0 3 4 )

b S - 0 . 0 4 3 0 . 0 0 6
( 0 . 0 5 5 ) ( 0 . 0 3 5 )

b S 0 . 0 4 4 - 0 . 0 0 4
( 0 . 0 4 4 ) ( 0 . 0 3 3 )

b*4 0 . 0 1 8 - 0 . 0 1 4
(0 . 0 4 3 ) ( 0 . 0 3 2 )

b 15 -0.068** 0 . 0 0 4
(0 . 0 4 2 ) ( 0 . 0 2 7 )

b 1, - 0 . 0 3 5 0 . 0 2 0
(0 . 0 4 4 ) ( 0 . 0 3 2 )

b 1, 0 . 0 2 6 - 0 . 0 1 0
( 0 . 0 4 3 ) ( 0 . 0 3 1 )

b S - 0 . 0 1 8 0 . 0 2 1
( 0 . 0 3 6 ) ( 0 . 0 2 9 )

0 . 0 2 5
( 0 . 0 7 2 )

“ i 0 .142*
( 0 . 0 1 0 )

«2 0 .858*
( 0 . 0 1 0 )

*1 0.414*
( 0 . 1 2 8 )

a 2 - 0 .5 2 3 *
( 0 . 1 1 3 )

a , 0 .221*
( 0 . 0 8 7 )

a« - 0 . 0 9 5
( 0 . 1 2 1 )

a B 0.403*
( 0 . 1 2 0 )

T e s t  o f  S e r i a l  D e p e n d e n c e  i n  S t a n d a r d i z e d  R e s i d u a l s
Q 2 9 . 1
Qs 2 5 . 2
BDS - 0 . 5 5

* Significant at 5% level. ** Significant at 10% level.
Standard errors of the estimated parameters are in parentheses. 
See the notes for Table 6.4 and Table 6.6.
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Figure 6.1
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Figure 6.2
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&£ Summary

This chapter reports econometric findings based on price movements in S&P 500 

futures, Crude Oil futures, Japanese Yen futures, Deutsche Mark futures, and Eurodollar 

futures over 1984-1993. Dickey-Fuller unit root tests indicate that the log-prices of all 

five futures are not stationary and have one unit root. Further, unit root tests show that 

the log-price changes of all five futures are stationary with no unit root. Therefore this 

suggests that we should use the log-price changes in the study of futures prices.

The five tests used in this chapter for detecting serial dependence in time series 

data are the Ljung-Box, Q2, BDS , TAR-F, and Bispectral test. When studying the price 

movements of the five futures, the tests were applied to the log-price changes of the 

futures. The BDS test shows that log-price changes for all five futures are not IID. The 

Ljung-Box test indicates serial dependence in the log-price changes for the S&P 500, 

Crude Oil, and Eurodollar futures, but it can not detect serial dependence in log-price 

changes for the Japanese Yen and Deutsche Mark futures. The Q2 test shows the serial 

dependence in squared log-price changes of all five futures. The TAR-F test detected the 

nonlinear serial dependence in the log-price changes of all five futures except the 

Japanese Yen futures. The Bispectral test found the nonlinear serial dependence in four 

of five futures with the exception being Crude Oil futures.

The fust model of serial dependence in the log-price changes of these five futures 

was based on a linear AR model with the days-of-the-week effect and the holiday effect 

in conditional mean. The AR order for each futures is determined by Akaike information
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criterion. The residuals of the models can pass the Ljung-Box test, but they can not pass 

neither the Q2 test nor the BDS test. They indicated that the serial dependence in log- 

price changes of the five futures in nonlinear. Because the value of the Q2 statistic for 

the log-price changes is large, the serial dependence is probably the results of conditional 

heteroskedasticity. Therefor we applied the GARCH model to the log-price changes of 

futures.

The GARCH model specified has a linear AR process in conditional mean, where 

the conditional variance depends on the residual square and the variance of last period, 

as well as the days-of-the-week and holiday effect. The results show that the conditional 

variance has strong dependence on the sample variance and the conditional variance of 

last period. The results also suggest that the days-of-the-week and holiday effect in 

variance are significant. The standardized residuals of all rive futures pass the Ljung-Box 

and Q2 test. The standardized residuals of Japanese Yen futures, Deutsche Mark futures, 

and Eurodollar futures also pass the BDS test. We conclude that these three futures can 

be modeled by the GARCH process. But the standardized residuals of S&P 500 futures 

and Crude Oil futures failed to pass the BDS test. Thus the GARCH models are not 

suited for these two futures.

Because the large value of the TAR-F statistic is obtained for the log-price 

changes of S&P 500 futures and of Crude Oil futures, the TAR model appears to be a 

good alternative for modeling the log-price changes of S&P 500 futures and of Crude Oil 

futures. For the log-price changes of S&P 500 futures, the threshold 1 and three 

threshold regions are identified based on the arranged recursive regression,. The
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estimation of the TAR model also shows that the AR coefficients are different when the 

log-price change in last period falls into different threshold regions. The standardized 

residuals of the TAR model pass the Ljung-Box, Q2, and BDS test. This shows the TAR 

model can adequately describe the log-price changes of S&P 500 futures.

For the Crude Oil log-price changes, the log-price change from 2 periods ago is 

selected as the threshold variable. Two threshold regions are identified. The estimation 

of the TAR model confirms that the AR coefficients are different when the log-price 

change from 2 periods ago falls into different threshold regions. The standardized 

residuals of the TAR model passed only the Ljung-Box test. They pass neither the Q2 test 

nor the BDS test. Consequently the TAR model is not adequate for log-price change of 

Crude Oil futures. Because the value of the Q2 statistic calculated for the log-price 

changes is very large, and the estimation of the GARCH model for the log-price changes 

of the Crude Oil shows significant serial dependence in the conditional variance, a 

combined TAR-GARCH model is fitted to the log-price changes of Crude Oil futures. 

The estimated results show that the AR coefficients in the conditional mean do have 

different values when the log-price change from 2 periods ago falls into different 

threshold regions. The results also show that the variance has strong dependence on the 

residual square and on the variance of last period, the days-of-the-week effect and the 

holiday effect in variance are significant. The standardized residuals of the combined 

TAR-GARCH model can pass the Ljung-Box test, the Q2 test, and the BDS test. These 

test results indicated that the TAR-GARCH model can adequately describe the log-price 

changes of Crude Oil futures.
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The results found in this chapter indicated serial dependence exists in the log-price 

changes of the five futures studied which reject the random walk model. The results also 

rejected the mean-reverting model because it requires the price changes over short 

horizon to follow a random walk. For price changes of Japanese Yen futures and of 

Deutsche Mark futures, the GARCH model do not show any significant serial dependence 

in the conditional mean. The GARCH model only has serial dependence in conditional 

variance. So the price changes of Japanese Yen futures and of Deutsche Mark futures are 

consistent with the martingale model. For the log-price changes of S&P 500 futures, of 

Crude Oil futures, and of Eurodollar futures, there is serial dependence in the conditional 

mean of the model describing them. Thus the price changes of these three futures do not 

follow the martingale model.

Our finding indicate that the log-price changes of three futures have conditional 

mean which depends on past log-price changes. This shows that current price can be 

predicated from past prices. But whether this is consistent with efficient market 

hypothesis remains to be investigated. Fama (1991), in a survey of recent research on 

the efficient market hypothesis, pointed out that the predictability of the price changes 

in financial markets does not necessarily reject the efficient market hypothesis. To test 

if the efficient market hypothesis is violated, we need to go further to see how much of 

the variation in price changes can be predicted by the model. If only a small part of price 

variation is predictable, then the prediction of prices probably can not be used for making 

a profit when there is a transaction cost of trading futures.
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CHAPTER 7 

CONCLUSIONS

Modeling price dynamics in financial markets has become an important research 

area in financial economics. In the past the empirical studies of financial price 

movements were based on models that were incapable of detecting or modeling 

nonlinearity and serial-dependence characterized financial market data. Because of the 

limitation of these models, methods used to study price dynamics in financial markets 

have gradually shifted from previous linear techniques to nonlinear techniques and 

models applicable to inherently nonlinear financial data. In this dissertation, three new 

statistical tests are studied and two econometric nonlinear time-series models are applied 

to futures prices. The tests and models studied are fully applicable to a nonlinear data 

generating process. The findings reported in this dissertation show that the tests and 

models are fundamentally useful for detecting and modeling nonlinear time-series 

process in financial prices.

This dissertation concerned and investigated the finite sample properties of the 

BDS test, the TAR-F test, and the Q2 test. The investigation was based on Monte Carlo 

experiments. Monte Carlo experiments consisted of nine data generating processes 

(DGPs) which represent three IID time series, two linear processes, and four nonlinear

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

216

time series processes. For each DGP, several parameter values and sample sizes were 

used to specify a Monte Carlo experiment. The results of Monte Carlo experiments have 

been summarized using response surfaces. The response surfaces are statistical 

summaries of the Monte Carlo findings. They show how the variation of the test 

statistics can be linked to experiment sample size and to variation in the parameters of 

the DGP. The main findings which emerge from the Monte Carlo investigation are as 

follows.

First, the finite sample rejection frequency under the null hypothesis for all three 

tests is quite close to the asymptotic probability. Second, under the alternative 

hypothesis, the power of the tests reaches unity at sample size of 1000 when the DGPs 

of alternative hypothesis are not too close to the DGP of null hypothesis. A DGP’s 

departure from DGP of null hypothesis is reflected by the parameter value set in the 

Monte Carlo experiment. For example, the power of the tests is nearly 100% at sample 

size of 1000 when the parameter of DGP of nonlinear MA is 0.3. If the departure of 

DGPs from the DGP assumed under the null hypothesis is larger, the power of the tests 

can reach unity at smaller sample size. If the sample size is larger, the power of the 

tests can reach unity when the departure of DGP from the DGP assumed under the null 

hypothesis is smaller. Finally, if either one or both the departure of DGP from the DGP 

assumed under the null hypothesis and the sample size are smaller, the power of these 

tests will be much less than unity.

Overall, the finite sample performance of the three tests can be summarized as 

follows. The BDS statistic has higher power than the Q2 statistic does against the DGPs
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of linear time series processes. The TAR-F statistic has highest power among the three 

against DGPs of nonlinear time series processes except when DGP is GARCH. In this 

case, it appears that the BDS statistic has the highest power. The Monte Carlo 

experiments indicated that the BDS test yields the most reliable results with L=1.S 

(correlation length) and M=3 (embedding dimension). The results here are important 

to researchers because the number of the BDS statistics to be calculated can be cut 

down and we do not have to look at many BDS statistics calculated and decide which 

one to use for hypothesis test. The Monte Carlo experiments also showed that the TAR- 

F statistic can be used to identify the threshold lag of a TAR process. This result is also 

very useful for TAR model building. We used this finding in modeling futures prices 

in Chapter 6 of this dissertation.

The Monte Carlo findings of three statistical tests in this dissertation may 

provide information useful for researchers building econometric model of financial 

markets. First, the three tests appear to be quite reliable for detecting varieties of serial 

dependence time series data. The tests also appear to be able to detect nonlinear serial 

dependence. Linear testing methods sometime fail in this case. Second, the ideal 

working range of these tests is for sample size of 1000 or larger and the time series 

being tested not too close to the null hypotheses of the tests. If the sample size is small, 

or the time series is too close to the null hypothesis, the tests will have low power to 

reject the false null hypothesis. We have used our findings in an empirical application.

Specifically in Chapter 6, the finite sample properties of these three new 

statistical tests were applied to analyze futures prices. In this dissertation, I also applied
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the linear technique of Ljung-Box autocorrelation method and the nonlinear technique 

of the Bispectral test to futures prices. Empirical results were based on a study of five 

futures prices. Our findings show that futures prices have nonlinear serial dependence. 

The linear technique of Ljung-Box autocorrelation test can fail to detect nonlinear serial 

dependence in futures prices. The Bispectral test gave similar test results as the three 

tests did. The econometric linear time series models are inadequate for modeling futures 

prices. The futures prices of Japanese Yen, Deutsche Mark, and Eurodollar have 

autoregressive conditional heteroskedasticity (ARCH) type nonlinear serial dependence 

and they can be modeled by nonlinear model of GARCH process. The S&P 500 futures 

prices appear nonlinear in the conditional mean. Accordingly the series is modeled 

using a TAR model. In contrast, the futures prices of Crude Oil have ARCH 

nonlinearity and nonlinearity in conditional mean, so they have to be modeled by a 

combined TAR-GARCH model.

The study of price movements of five futures in this dissertation shows that price 

movements do not conform to a random walk, rather they appear have some serial 

dependence. The results here also rejected the mean-reverting model because this model 

requires price changes to follow a random walk in the short-run. Japanese Yen futures 

and Deutsche Mark futures conform to a martingale model because there is no 

significant serial dependence in the conditional mean of their log price changes. For 

S&P 500 futures, Crude Oil futures, and Eurodollar futures, the conditional mean of log 

price changes has serial dependence. Thus they do not conform with the martingale 

model. But whether the serial dependence found in the conditional mean of these
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futures prices can be used for formulating profitable trading strategy in violation of the 

efficient market hypothesis remains to be investigated.

The following conclusion emerged from the study of futures prices in this 

dissertation. When analyzing price changes in futures markets, we must account for the 

nonlinear serial dependence. To model futures prices, we need to use nonlinear models 

rather than linear models because the underlying data are inherently nonlinear. 

Furthermore, we should not restrict the use of nonlinear models to those with 

conditional heteroskedasticity (eg., GARCH model), because some futures appear to 

have nonlinear conditional mean. This recommends the use of TAR and TAR-GARCH 

model. The findings also pointed out the need for more research on forecasting 

conditional volatility based on models with conditional heteroskedasticity and testing 

of the efficient market hypothesis with nonlinear models.
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